mm_plugin.py 71 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/processing_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
18
import inspect
luopl's avatar
luopl committed
19
import math
luopl's avatar
luopl committed
20
import re
luopl's avatar
luopl committed
21
from copy import deepcopy
chenych's avatar
chenych committed
22
from dataclasses import dataclass
luopl's avatar
luopl committed
23
from io import BytesIO
chenych's avatar
chenych committed
24
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
luopl's avatar
luopl committed
25
26

import numpy as np
luopl's avatar
luopl committed
27
import torch
luopl's avatar
luopl committed
28
29
30
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override

chenych's avatar
chenych committed
31
32
33
34
35
36
37
38
39
40
41
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
    is_librosa_available,
    is_pillow_available,
    is_pyav_available,
    is_transformers_version_greater_than,
)


if is_librosa_available():
    import librosa
luopl's avatar
luopl committed
42
43
44
45
46
47
48
49
50
51
52


if is_pillow_available():
    from PIL import Image
    from PIL.Image import Image as ImageObject


if is_pyav_available():
    import av


luopl's avatar
luopl committed
53
54
55
56
57
58
59
if is_transformers_version_greater_than("4.45.0"):
    from transformers.models.mllama.processing_mllama import (
        convert_sparse_cross_attention_mask_to_dense,
        get_cross_attention_token_mask,
    )


mashun1's avatar
mashun1 committed
60
61
62
63
if is_transformers_version_greater_than("4.52.0"):
    from transformers.image_utils import make_flat_list_of_images
    from transformers.video_utils import make_batched_videos
elif is_transformers_version_greater_than("4.49.0"):
chenych's avatar
chenych committed
64
65
66
    from transformers.image_utils import make_batched_videos, make_flat_list_of_images


luopl's avatar
luopl committed
67
68
if TYPE_CHECKING:
    from av.stream import Stream
chenych's avatar
chenych committed
69
    from numpy.typing import NDArray
luopl's avatar
luopl committed
70
    from transformers import PreTrainedTokenizer, ProcessorMixin
chenych's avatar
chenych committed
71
    from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
luopl's avatar
luopl committed
72
73
74
75
76
77
    from transformers.image_processing_utils import BaseImageProcessor

    class EncodedImage(TypedDict):
        path: Optional[str]
        bytes: Optional[bytes]

chenych's avatar
chenych committed
78
79
80
81
82
83
84
85
86
87
88
89
    ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
    VideoInput = Union[str, BinaryIO]
    AudioInput = Union[str, BinaryIO, NDArray]

    class MMProcessor(ProcessorMixin):
        patch_size: int
        image_seq_length: int
        num_additional_image_tokens: int
        vision_feature_select_strategy: Literal["default", "full"]

        def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
            pass
luopl's avatar
luopl committed
90
91


chenych's avatar
chenych committed
92
93
94
95
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
    r"""Get paligemma token type ids for computing loss.

    It is slightly different with the original token type ids where the prompt part is 0.
luopl's avatar
luopl committed
96
97

    Returns:
chenych's avatar
chenych committed
98
99
        batch_token_type_ids: shape (batch_size, seq_length)

luopl's avatar
luopl committed
100
101
102
    """
    batch_token_type_ids = []
    for imglen, seqlen in zip(imglens, seqlens):
chenych's avatar
chenych committed
103
        image_seqlen = imglen * processor.image_seq_length
luopl's avatar
luopl committed
104
105
106
107
108
        batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))

    return batch_token_type_ids


chenych's avatar
chenych committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcessor"):
    r"""Get gemma3 token type ids for computing loss.

    Returns:
        batch_token_type_ids: shape (batch_size, seq_length)

    """
    image_token_id: int = getattr(processor, "image_token_id")
    batch_token_type_ids = []
    for token_ids in batch_ids:
        token_ids = np.array(token_ids)
        token_type_ids = np.zeros_like(token_ids)
        token_type_ids[token_ids == image_token_id] = 1
        batch_token_type_ids.append(token_type_ids.tolist())

    return batch_token_type_ids


def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
    r"""Make nested list of images."""
    batch_images = []
    for imglen in imglens:
        batch_images.append(images[:imglen])
        images = images[imglen:]

    return batch_images


chenych's avatar
chenych committed
137
138
139
140
141
142
@dataclass
class MMPluginMixin:
    image_token: Optional[str]
    video_token: Optional[str]
    audio_token: Optional[str]
    expand_mm_tokens: bool = True
luopl's avatar
luopl committed
143
144
145

    def _validate_input(
        self,
chenych's avatar
chenych committed
146
147
148
149
        processor: Optional["MMProcessor"],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
150
    ) -> None:
chenych's avatar
chenych committed
151
152
153
154
155
156
        r"""Validate if this model accepts the input modalities."""
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        video_processor: BaseImageProcessor = getattr(
            processor, "video_processor", getattr(processor, "image_processor", None)
        )
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
luopl's avatar
luopl committed
157
        if len(images) != 0 and self.image_token is None:
luopl's avatar
luopl committed
158
159
160
            raise ValueError(
                "This model does not support image input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
161
162

        if len(videos) != 0 and self.video_token is None:
luopl's avatar
luopl committed
163
164
165
            raise ValueError(
                "This model does not support video input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
166

chenych's avatar
chenych committed
167
168
169
170
171
172
        if len(audios) != 0 and self.audio_token is None:
            raise ValueError(
                "This model does not support audio input. Please check whether the correct `template` is used."
            )

        if self.image_token is not None and processor is None:
mashun1's avatar
mashun1 committed
173
            raise ValueError("Processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
174
175

        if self.image_token is not None and image_processor is None:
mashun1's avatar
mashun1 committed
176
            raise ValueError("Image processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
177

chenych's avatar
chenych committed
178
        if self.video_token is not None and video_processor is None:
mashun1's avatar
mashun1 committed
179
            raise ValueError("Video processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
180

chenych's avatar
chenych committed
181
        if self.audio_token is not None and feature_extractor is None:
mashun1's avatar
mashun1 committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            raise ValueError("Audio feature extractor was not found, please check and update your model file.")

    def _validate_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ):
        r"""Validate if the number of images, videos and audios match the number of placeholders in messages."""
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
        for message in messages:
            num_image_tokens += message["content"].count(IMAGE_PLACEHOLDER)
            num_video_tokens += message["content"].count(VIDEO_PLACEHOLDER)
            num_audio_tokens += message["content"].count(AUDIO_PLACEHOLDER)

        if len(images) != num_image_tokens:
            raise ValueError(
                f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens in {messages}."
            )

        if len(videos) != num_video_tokens:
            raise ValueError(
                f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens in {messages}."
            )

        if len(audios) != num_audio_tokens:
            raise ValueError(
                f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens in {messages}."
            )
chenych's avatar
chenych committed
212
213
214
215

    def _preprocess_image(
        self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
    ) -> "ImageObject":
chenych's avatar
chenych committed
216
        r"""Pre-process a single image."""
chenych's avatar
chenych committed
217
218
        if (image.width * image.height) > image_max_pixels:
            resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
luopl's avatar
luopl committed
219
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
chenych's avatar
chenych committed
220
221
222
223
224
225
            image = image.resize((width, height))

        if (image.width * image.height) < image_min_pixels:
            resize_factor = math.sqrt(image_min_pixels / (image.width * image.height))
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
            image = image.resize((width, height))
luopl's avatar
luopl committed
226
227
228
229
230
231

        if image.mode != "RGB":
            image = image.convert("RGB")

        return image

chenych's avatar
chenych committed
232
233
    def _get_video_sample_indices(
        self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
chenych's avatar
chenych committed
234
235
    ) -> list[int]:
        r"""Compute video sample indices according to fps."""
luopl's avatar
luopl committed
236
        total_frames = video_stream.frames
chenych's avatar
chenych committed
237
238
239
        if total_frames == 0:  # infinite video
            return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)

chenych's avatar
chenych committed
240
        sample_frames = max(1, math.floor(float(video_stream.duration * video_stream.time_base) * video_fps))
luopl's avatar
luopl committed
241
        sample_frames = min(total_frames, video_maxlen, sample_frames)
chenych's avatar
chenych committed
242
        return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
luopl's avatar
luopl committed
243

chenych's avatar
chenych committed
244
245
    def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
        r"""Regularize images to avoid error. Including reading and pre-processing."""
luopl's avatar
luopl committed
246
247
        results = []
        for image in images:
chenych's avatar
chenych committed
248
            if isinstance(image, (str, BinaryIO)):
luopl's avatar
luopl committed
249
                image = Image.open(image)
luopl's avatar
luopl committed
250
251
            elif isinstance(image, bytes):
                image = Image.open(BytesIO(image))
luopl's avatar
luopl committed
252
253
254
255
256
257
258
            elif isinstance(image, dict):
                if image["bytes"] is not None:
                    image = Image.open(BytesIO(image["bytes"]))
                else:
                    image = Image.open(image["path"])

            if not isinstance(image, ImageObject):
chenych's avatar
chenych committed
259
                raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
luopl's avatar
luopl committed
260
261
262

            results.append(self._preprocess_image(image, **kwargs))

chenych's avatar
chenych committed
263
        return {"images": results}
luopl's avatar
luopl committed
264

chenych's avatar
chenych committed
265
266
    def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
        r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
luopl's avatar
luopl committed
267
268
269
270
        results = []
        for video in videos:
            container = av.open(video, "r")
            video_stream = next(stream for stream in container.streams if stream.type == "video")
chenych's avatar
chenych committed
271
            sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
chenych's avatar
chenych committed
272
            frames: list[ImageObject] = []
luopl's avatar
luopl committed
273
274
275
276
277
            container.seek(0)
            for frame_idx, frame in enumerate(container.decode(video_stream)):
                if frame_idx in sample_indices:
                    frames.append(frame.to_image())

chenych's avatar
chenych committed
278
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
279
280
            results.append(frames)

chenych's avatar
chenych committed
281
        return {"videos": results}
luopl's avatar
luopl committed
282

chenych's avatar
chenych committed
283
284
285
286
287
    def _regularize_audios(
        self, audios: list["AudioInput"], sampling_rate: float, **kwargs
    ) -> dict[str, Union[list["NDArray"], list[float]]]:
        r"""Regularizes audios to avoid error. Including reading and resampling."""
        results, sampling_rates = [], []
chenych's avatar
chenych committed
288
        for audio in audios:
chenych's avatar
chenych committed
289
290
            if isinstance(audio, (str, BinaryIO)):
                audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
chenych's avatar
chenych committed
291
292
293
294
295

            if not isinstance(audio, np.ndarray):
                raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")

            results.append(audio)
chenych's avatar
chenych committed
296
            sampling_rates.append(sampling_rate)
chenych's avatar
chenych committed
297

chenych's avatar
chenych committed
298
        return {"audios": results, "sampling_rates": sampling_rates}
chenych's avatar
chenych committed
299

luopl's avatar
luopl committed
300
301
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
302
303
304
305
306
307
308
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        imglens: Optional[list[int]] = None,
    ) -> dict[str, "torch.Tensor"]:
        r"""Process visual inputs.
luopl's avatar
luopl committed
309
310
311
312
313
314
315

        Returns: (llava and paligemma)
            pixel_values: tensor with shape (B, C, H, W)

        Returns: (qwen2-vl)
            pixel_values: tensor with shape (num_patches, patch_dim)
            image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
chenych's avatar
chenych committed
316
317
318
319
320
321
322
323
324
                            where num_patches == torch.prod(image_grid_thw)

        Returns: (mllama)
            pixel_values: tensor with shape
                          (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
                          For example, (2, 1, 4, 3, 560, 560).
            aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
            aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
            num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
luopl's avatar
luopl committed
325
326

        """
chenych's avatar
chenych committed
327
        mm_inputs = {}
luopl's avatar
luopl committed
328
        if len(images) != 0:
chenych's avatar
chenych committed
329
            image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
luopl's avatar
luopl committed
330
331
            images = self._regularize_images(
                images,
chenych's avatar
chenych committed
332
333
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
            )["images"]
            if imglens is not None:  # if imglens are provided, make batched images
                images = _make_batched_images(images, imglens)

            image_processor_kwargs = {}
            if getattr(processor, "image_do_pan_and_scan", False):  # gemma3 image processor
                image_processor_kwargs.update(
                    {
                        "do_pan_and_scan": True,
                        "pan_and_scan_min_crop_size": 256,
                        "pan_and_scan_max_num_crops": 4,
                        "pan_and_scan_min_ratio_to_activate": 1.2,
                    }
                )

            mm_inputs.update(image_processor(images, return_tensors="pt", **image_processor_kwargs))
luopl's avatar
luopl committed
350
351

        if len(videos) != 0:
chenych's avatar
chenych committed
352
353
354
            video_processor: BaseImageProcessor = getattr(
                processor, "video_processor", getattr(processor, "image_processor", None)
            )
luopl's avatar
luopl committed
355
356
            videos = self._regularize_videos(
                videos,
chenych's avatar
chenych committed
357
358
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
luopl's avatar
luopl committed
359
                video_fps=getattr(processor, "video_fps", 2.0),
chenych's avatar
chenych committed
360
                video_maxlen=getattr(processor, "video_maxlen", 128),
chenych's avatar
chenych committed
361
            )["videos"]
chenych's avatar
chenych committed
362
363
364
365
366
367
            if "videos" in inspect.signature(video_processor.preprocess).parameters:  # for qwen2_vl and video_llava
                mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt"))
            else:  # for llava_next_video
                mm_inputs.update(video_processor(videos, return_tensors="pt"))

        if len(audios) != 0:
chenych's avatar
chenych committed
368
            feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
chenych's avatar
chenych committed
369
370
            audios = self._regularize_audios(
                audios,
chenych's avatar
chenych committed
371
372
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
chenych's avatar
chenych committed
373
374
375
            mm_inputs.update(
                feature_extractor(
                    audios,
chenych's avatar
chenych committed
376
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
chenych's avatar
chenych committed
377
378
379
380
381
382
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
383
384
385

        return mm_inputs

chenych's avatar
chenych committed
386
387
388

@dataclass
class BasePlugin(MMPluginMixin):
luopl's avatar
luopl committed
389
390
    def process_messages(
        self,
chenych's avatar
chenych committed
391
392
393
394
395
396
397
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        r"""Pre-process input messages before tokenization for VLMs."""
chenych's avatar
chenych committed
398
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
399
400
401
402
        return messages

    def process_token_ids(
        self,
chenych's avatar
chenych committed
403
404
405
406
407
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
408
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
409
410
411
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
        r"""Pre-process token ids after tokenization for VLMs."""
chenych's avatar
chenych committed
412
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
413
414
415
416
        return input_ids, labels

    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
417
418
419
420
421
422
423
424
425
426
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        r"""Build batched multimodal inputs for VLMs.
luopl's avatar
luopl committed
427
428
429
430

        Arguments:
            images: a list of image inputs, shape (num_images,)
            videos: a list of video inputs, shape (num_videos,)
chenych's avatar
chenych committed
431
            audios: a list of audio inputs, shape (num_audios,)
luopl's avatar
luopl committed
432
433
            imglens: number of images in each sample, shape (batch_size,)
            vidlens: number of videos in each sample, shape (batch_size,)
chenych's avatar
chenych committed
434
            audlens: number of audios in each sample, shape (batch_size,)
luopl's avatar
luopl committed
435
            batch_ids: token ids of input samples, shape (batch_size, seq_len)
luopl's avatar
luopl committed
436
            processor: a processor for pre-processing images and videos
chenych's avatar
chenych committed
437

luopl's avatar
luopl committed
438
        """
chenych's avatar
chenych committed
439
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
440
        return self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
441
442


chenych's avatar
chenych committed
443
@dataclass
chenych's avatar
chenych committed
444
class Gemma3Plugin(BasePlugin):
luopl's avatar
luopl committed
445
446
447
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
448
449
450
451
452
453
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
454
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
455
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
456
457
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
458
459
460
461
462
463
464
465
        boi_token: str = getattr(processor, "boi_token")
        full_image_sequence: str = getattr(processor, "full_image_sequence")
        image_str = full_image_sequence if self.expand_mm_tokens else boi_token

        do_pan_and_scan: bool = getattr(processor, "image_do_pan_and_scan", False)
        if do_pan_and_scan:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

luopl's avatar
luopl committed
466
467
468
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
469
470
471
472
473
474
475
476
477
                if do_pan_and_scan:
                    image_placeholder_str = (
                        "Here is the original image {{image}} and here are some crops to help you see better "
                        + " ".join(["{{image}}"] * mm_inputs["num_crops"][0][num_image_tokens])
                    )
                else:
                    image_placeholder_str = "{{image}}"

                content = content.replace(IMAGE_PLACEHOLDER, image_placeholder_str, 1)
luopl's avatar
luopl committed
478
                num_image_tokens += 1
luopl's avatar
luopl committed
479

chenych's avatar
chenych committed
480
            message["content"] = content.replace("{{image}}", image_str)
luopl's avatar
luopl committed
481
482
483
484
485
486

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
487
488
489
490
491
492
493
494
495
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
496
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
497
498
499
500
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("num_crops", None)
        mm_inputs["token_type_ids"] = _get_gemma3_token_type_ids(batch_ids, processor)
        return mm_inputs
luopl's avatar
luopl committed
501
502


chenych's avatar
chenych committed
503
@dataclass
chenych's avatar
chenych committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
class InternVLPlugin(BasePlugin):
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "ProcessorMixin",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        image_processor_kwargs = {}
        if getattr(processor, "crop_to_patches", False):
            image_processor_kwargs.update(
                {
                    "crop_to_patches": True,
                    "max_patches": 12,
                    "min_patches": 1,
                }
            )

        mm_inputs = {}
        image_video_patches = []

        if len(images) != 0 and isinstance(images[0], str):
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 1024 * 1024),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]

        if len(videos) != 0 and isinstance(videos[0], str):
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]

        if len(images) != 0:
            images = make_flat_list_of_images(images)
            image_inputs = image_processor(images=images, return_tensors="pt", **image_processor_kwargs)
            image_num_patches = image_inputs.pop("num_patches")
            image_pixel_values = image_inputs.pop("pixel_values")
            image_num_patches_indices = np.cumsum(image_num_patches)

        if len(videos) != 0:
            videos = make_batched_videos(videos)
            num_frames_per_video = [len(video) for video in videos]
            patch_indices = np.cumsum(num_frames_per_video)
            image_processor_kwargs["crop_to_patches"] = False
            video_inputs = image_processor(images=videos, return_tensors="pt", **image_processor_kwargs)
            video_num_patches = video_inputs.pop("num_patches")
            video_pixel_values = video_inputs.pop("pixel_values")
            video_num_patches_indices = np.cumsum(video_num_patches)

        # NOT SUPPORT IMAGE VIDEO INTERLEAVED
        if len(images) != 0 and image_pixel_values is not None:
            for i in range(len(images)):
                start_index = image_num_patches_indices[i - 1] if i > 0 else 0
                end_index = image_num_patches_indices[i]
                image_video_patches.append(image_pixel_values[start_index:end_index])

        if len(videos) != 0 and video_pixel_values is not None:
            patch_indices_with_prefix = [0] + list(patch_indices)
            for i in range(len(videos)):
                current_patch_index = patch_indices_with_prefix[i]
                end_patch_index = patch_indices_with_prefix[i + 1]
                start_index = video_num_patches_indices[current_patch_index - 1] if i > 0 else 0
                end_index = video_num_patches_indices[end_patch_index - 1]
                image_video_patches.append(video_pixel_values[start_index:end_index])

        if len(images) != 0 or len(videos) != 0:
            mm_inputs["pixel_values"] = torch.cat(image_video_patches, dim=0)

        if len(images) != 0:
            mm_inputs.update({"image_num_patches": image_num_patches})

        if len(videos) != 0:
            mm_inputs.update({"video_patch_indices": patch_indices})
            mm_inputs.update({"video_num_patches": video_num_patches})

        return mm_inputs

    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["ProcessorMixin"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
599
600
        self._validate_messages(messages, images, videos, audios)
        num_image_tokens, num_video_tokens = 0, 0
chenych's avatar
chenych committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
        messages = deepcopy(messages)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

        image_pixel_patch_list = mm_inputs.get("image_num_patches")  # pathes of images
        video_num_patches = mm_inputs.get("video_num_patches")  # all patches for frames of videos
        video_patch_indices = mm_inputs.get("video_patch_indices")  # num frames of per video

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
                    1,
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
                end_patch_index = video_patch_indices[num_video_tokens]
                num_patches = list(video_num_patches[current_patch_index:end_patch_index])
                video_replaced_prompt = "\n".join(
                    f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
                    for i in range(len(num_patches))
                )
                content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
                num_video_tokens += 1

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["ProcessorMixin"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("image_num_patches", None)
        mm_inputs.pop("video_patch_indices", None)
        mm_inputs.pop("video_num_patches", None)
        return mm_inputs


chenych's avatar
chenych committed
654
655
656
657
class KimiVLPlugin(BasePlugin):
    @override
    def process_messages(self, messages, images, videos, audios, processor):
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
658
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
659
660
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mashun1's avatar
mashun1 committed
661
662
663
            image_grid_hws = mm_inputs.get("image_grid_hws", [])
        else:
            image_grid_hws = [None] * len(images)
chenych's avatar
chenych committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

        num_image_tokens = 0
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        merge_length = math.prod(image_processor.merge_kernel_size)
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                image_seqlen = image_grid_hws[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<|media_start|>image<|media_content|>{self.image_token * image_seqlen}<|media_end|>",
                    1,
                )
                num_image_tokens += 1

            message["content"] = content

        return messages


chenych's avatar
chenych committed
685
@dataclass
chenych's avatar
chenych committed
686
class Llama4Plugin(BasePlugin):
luopl's avatar
luopl committed
687
688
689
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
690
691
692
693
694
695
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
696
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
697
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
698
699
700
701
702
703
704
705
706
707
708
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
                num_patches_per_chunk = int(
                    (image_height // processor.patch_size)
                    * (image_width // processor.patch_size)
                    // processor.downsample_ratio
                )
                aspect_ratios = mm_inputs.pop("aspect_ratios")

luopl's avatar
luopl committed
709
710
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
711
712
713
        for message in messages:
            content = message["content"]
            if self.expand_mm_tokens:
chenych's avatar
chenych committed
714
                placeholder_count = content.count(IMAGE_PLACEHOLDER)
chenych's avatar
chenych committed
715
716
717
718
719
720
721
722
723
724
725
726
                prompt_splits = content.split(IMAGE_PLACEHOLDER)
                new_content = []
                for local_image_index, split_part in enumerate(prompt_splits):
                    new_content.append(split_part)
                    if local_image_index < placeholder_count:
                        tokens_for_this_image = processor._prompt_split_image(
                            aspect_ratios[num_image_tokens], num_patches_per_chunk
                        )
                        num_image_tokens += 1
                        new_content.append(tokens_for_this_image)

                content = "".join(new_content)
chenych's avatar
chenych committed
727
728
            else:
                content = content.replace(IMAGE_PLACEHOLDER, self.image_token)
chenych's avatar
chenych committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
747
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        mm_inputs.pop("aspect_ratios", None)
        return mm_inputs


@dataclass
class LlavaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
764
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0]))
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen = 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


@dataclass
class LlavaNextPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
800
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
801
802
803
804
805
806
807
        num_image_tokens = 0
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
luopl's avatar
luopl committed
808

luopl's avatar
luopl committed
809
810
        for message in messages:
            content = message["content"]
luopl's avatar
luopl committed
811
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
812
813
814
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
chenych's avatar
chenych committed
815
                    if processor.vision_feature_select_strategy == "default":
luopl's avatar
luopl committed
816
817
818
                        image_seqlen -= 1
                else:
                    image_seqlen = 1
luopl's avatar
luopl committed
819
820

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
luopl's avatar
luopl committed
821
                num_image_tokens += 1
luopl's avatar
luopl committed
822
823
824
825
826
827

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


chenych's avatar
chenych committed
828
@dataclass
luopl's avatar
luopl committed
829
830
831
832
class LlavaNextVideoPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
833
834
835
836
837
838
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
839
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
840
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
841
        messages = deepcopy(messages)
chenych's avatar
chenych committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
                    if processor.vision_feature_select_strategy == "default":
                        image_seqlen -= 1
                else:
                    image_seqlen = 1

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        if self.expand_mm_tokens:
            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim
chenych's avatar
chenych committed
868
869
                image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
                video_seqlen = image_seqlen // 4 * num_frames  # divide by 4 needed for avg pooling layer
chenych's avatar
chenych committed
870
871
        else:
            video_seqlen = 1
chenych's avatar
chenych committed
872

chenych's avatar
chenych committed
873
874
875
876
        for message in messages:
            content = message["content"]
            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
luopl's avatar
luopl committed
877

chenych's avatar
chenych committed
878
            message["content"] = content.replace("{{video}}", self.video_token)
luopl's avatar
luopl committed
879
880
881
882

        return messages


chenych's avatar
chenych committed
883
@dataclass
luopl's avatar
luopl committed
884
class MiniCPMVPlugin(BasePlugin):
chenych's avatar
chenych committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            if "valid_image_nums_ls" in kwargs:
                valid_image_nums_ls = kwargs["valid_image_nums_ls"]
                new_images = []
                idx = 0
                for valid_image_nums in valid_image_nums_ls:
                    new_images.append(images[idx : idx + valid_image_nums])
                    idx += valid_image_nums

                images = new_images

            image_inputs = image_processor(
                images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
            )
            mm_inputs.update(image_inputs)

        if len(videos) != 0:
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]
            video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
            mm_inputs.update(video_inputs)

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            if "valid_audio_nums_ls" in kwargs:
                valid_audio_nums_ls = kwargs["valid_audio_nums_ls"]
                audios_ls = []
                idx = 0
                for valid_audio_nums in valid_audio_nums_ls:
                    audios_ls.append(audios[idx : idx + valid_audio_nums])
                    idx += valid_audio_nums
            else:
                audios_ls = [audios]

            audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
                audios_ls,
                chunk_input=True,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )
            audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
            mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
            if kwargs.get("ret_phs", False):
                mm_inputs.update({"audio_phs": audio_phs})

        return mm_inputs

luopl's avatar
luopl committed
955
956
957
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
958
959
960
961
962
963
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
964
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
965
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
966
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
967
        messages = deepcopy(messages)
chenych's avatar
chenych committed
968
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
969
        mm_inputs, audio_inputs = {}, {}
luopl's avatar
luopl committed
970
971
972
973
974
975
        if len(images) != 0 and len(videos) != 0:
            raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")

        if len(videos) != 0:
            max_slice_nums = 2
            use_image_id = False
chenych's avatar
chenych committed
976
            mm_inputs = self._get_mm_inputs([], videos, [], processor)
luopl's avatar
luopl committed
977
978
979
980
        else:
            max_slice_nums = image_processor.max_slice_nums
            use_image_id = image_processor.use_image_id

chenych's avatar
chenych committed
981
        for i, message in enumerate(messages):
luopl's avatar
luopl committed
982
983
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
984
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
luopl's avatar
luopl committed
985
                num_image_tokens += 1
luopl's avatar
luopl committed
986
987
988
989
990
991

            while VIDEO_PLACEHOLDER in content:
                video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1
                content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
                num_video_tokens += 1

chenych's avatar
chenych committed
992
993
994
995
996
997
998
            while AUDIO_PLACEHOLDER in content:
                content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
                num_audio_tokens += 1

            message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
                "{{audio}}", "(<audio>./</audio>)"
            )
luopl's avatar
luopl committed
999

chenych's avatar
chenych committed
1000
        if len(images):
chenych's avatar
chenych committed
1001
1002
            mm_inputs = self._get_mm_inputs(images, [], [], processor)

chenych's avatar
chenych committed
1003
        if len(audios):
chenych's avatar
chenych committed
1004
            audio_inputs = self._get_mm_inputs([], [], audios, processor, ret_phs=True)
luopl's avatar
luopl committed
1005

chenych's avatar
chenych committed
1006
        if self.expand_mm_tokens and mm_inputs:
luopl's avatar
luopl committed
1007
1008
            pattern = "(<image>./</image>)"
            image_sizes = mm_inputs["image_sizes"]
chenych's avatar
chenych committed
1009
            idx = 0
luopl's avatar
luopl committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            for index, message in enumerate(messages):
                text = message["content"]
                image_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(image_tags)):
                    final_text = (
                        final_text
                        + text_chunks[i]
                        + image_processor.get_slice_image_placeholder(
chenych's avatar
chenych committed
1020
                            image_sizes[0][idx], idx, max_slice_nums, use_image_id
luopl's avatar
luopl committed
1021
1022
                        )
                    )
chenych's avatar
chenych committed
1023
1024
1025
1026
1027
                    idx += 1

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

chenych's avatar
chenych committed
1028
        if self.expand_mm_tokens and audio_inputs:
chenych's avatar
chenych committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
            pattern = "(<audio>./</audio>)"
            idx = 0
            for index, message in enumerate(messages):
                text = message["content"]
                audio_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(audio_tags)):
                    audio_placeholder = audio_inputs["audio_phs"][0][idx]
                    final_text = final_text + text_chunks[i] + audio_placeholder
                    idx += 1
luopl's avatar
luopl committed
1040
1041
1042
1043
1044
1045
1046
1047
1048

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1058
1059
        self._validate_input(processor, images, videos, audios)
        # image bound
luopl's avatar
luopl committed
1060
1061
        image_bounds_list = []
        valid_image_nums_ls = []
chenych's avatar
chenych committed
1062
        for i, input_ids in enumerate(batch_ids):
luopl's avatar
luopl committed
1063
1064
1065
1066
1067
1068
1069
1070
            input_ids_ = torch.tensor(input_ids)
            start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
                input_ids_ == processor.tokenizer.slice_start_id
            )
            end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
            image_start_tokens = torch.where(start_cond)[0]
            image_start_tokens += 1
            image_end_tokens = torch.where(end_cond)[0]
chenych's avatar
chenych committed
1071
            valid_image_nums_ls.append(imglens[i])
luopl's avatar
luopl committed
1072
1073
            image_bounds = torch.hstack(
                [
chenych's avatar
chenych committed
1074
1075
                    image_start_tokens.unsqueeze(-1),
                    image_end_tokens.unsqueeze(-1),
luopl's avatar
luopl committed
1076
1077
1078
1079
                ]
            )
            image_bounds_list.append(image_bounds)

chenych's avatar
chenych committed
1080
1081
1082
1083
1084
        mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
        if "tgt_sizes" not in mm_inputs:
            dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
            mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})

luopl's avatar
luopl committed
1085
        mm_inputs.update({"image_bound": image_bounds_list})
chenych's avatar
chenych committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

        if len(audios) > 0:
            # audio bound
            audio_bounds_ls = []
            spk_bounds_ls = []
            valid_audio_nums_ls = []

            for input_ids, audiolen in zip(batch_ids, audlens):
                input_ids_ = torch.tensor(input_ids)
                audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
                audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
                assert len(audio_start_idx) == len(audio_end_idx)
                audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
                audio_bounds_ls.append(audio_bounds)
                valid_audio_nums_ls.append(audiolen)

                spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
                spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
                assert len(spk_start_idx) == len(spk_end_idx)
                spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
                spk_bounds_ls.append(spk_bounds)

            audio_inputs = self._get_mm_inputs([], [], audios, processor, valid_audio_nums_ls=valid_audio_nums_ls)
            mm_inputs.update(audio_inputs)
            mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})

luopl's avatar
luopl committed
1112
1113
1114
        return mm_inputs


chenych's avatar
chenych committed
1115
@dataclass
luopl's avatar
luopl committed
1116
1117
1118
1119
class MllamaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1120
1121
1122
1123
1124
1125
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1126
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1127
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            num_image_tokens += content.count(IMAGE_PLACEHOLDER)
            message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token)

        return messages

chenych's avatar
chenych committed
1137
    @override
luopl's avatar
luopl committed
1138
1139
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1149
1150
1151
1152
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
        if mm_inputs:
            num_tiles = mm_inputs.pop("num_tiles")
chenych's avatar
chenych committed
1153
1154
            image_token_id: int = getattr(processor, "image_token_id")
            max_image_tiles: int = getattr(processor.image_processor, "max_image_tiles")
chenych's avatar
chenych committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
            cross_attention_token_mask = [
                get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids
            ]
            mm_inputs["cross_attention_mask"] = torch.from_numpy(
                convert_sparse_cross_attention_mask_to_dense(
                    cross_attention_token_mask,
                    num_tiles=num_tiles,
                    max_num_tiles=max_image_tiles,
                    length=max(len(input_ids) for input_ids in batch_ids),
                )
            )  # shape: (batch_size, length, max_num_images, max_num_tiles)

luopl's avatar
luopl committed
1167
1168
1169
        return mm_inputs


chenych's avatar
chenych committed
1170
@dataclass
luopl's avatar
luopl committed
1171
1172
1173
1174
class PaliGemmaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1175
1176
1177
1178
1179
1180
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1181
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1182
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1183
1184
1185
1186
1187
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1188
                content = content.replace(IMAGE_PLACEHOLDER, "", 1)
luopl's avatar
luopl committed
1189
                num_image_tokens += 1
luopl's avatar
luopl committed
1190

chenych's avatar
chenych committed
1191
            message["content"] = content
luopl's avatar
luopl committed
1192
1193
1194
1195
1196
1197

        return messages

    @override
    def process_token_ids(
        self,
chenych's avatar
chenych committed
1198
1199
1200
1201
1202
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
1203
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
1204
1205
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
chenych's avatar
chenych committed
1206
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1207
        num_images = len(images)
chenych's avatar
chenych committed
1208
        image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0  # skip mm token
luopl's avatar
luopl committed
1209
        image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
chenych's avatar
chenych committed
1210
        input_ids = [image_token_id] * num_images * image_seqlen + input_ids
luopl's avatar
luopl committed
1211
        if labels is not None:
chenych's avatar
chenych committed
1212
            labels = [IGNORE_INDEX] * num_images * image_seqlen + labels
luopl's avatar
luopl committed
1213
1214
1215
1216
1217
1218

        return input_ids, labels

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1228
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1229
        seqlens = [len(input_ids) for input_ids in batch_ids]
chenych's avatar
chenych committed
1230
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
1231
1232
1233
1234
        mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
        return mm_inputs


chenych's avatar
chenych committed
1235
@dataclass
luopl's avatar
luopl committed
1236
1237
1238
1239
class PixtralPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1240
1241
1242
1243
1244
1245
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1246
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1247
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1248
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1249
1250
1251
1252
1253
1254
1255
1256
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                # BC for transformers < 4.49.0
                if isinstance(mm_inputs["image_sizes"], list):
                    image_sizes = iter(mm_inputs["image_sizes"][0])
                else:
                    image_sizes = iter(mm_inputs["image_sizes"].tolist())
mashun1's avatar
mashun1 committed
1257

chenych's avatar
chenych committed
1258
1259
                image_break_token: str = getattr(processor, "image_break_token")
                image_end_token: str = getattr(processor, "image_end_token")
chenych's avatar
chenych committed
1260

luopl's avatar
luopl committed
1261
1262
1263
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1264
                if self.expand_mm_tokens:
chenych's avatar
chenych committed
1265
                    height, width = next(image_sizes)
chenych's avatar
chenych committed
1266
1267
1268
                    num_height_tokens = height // processor.patch_size
                    num_width_tokens = width // processor.patch_size
                    replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
luopl's avatar
luopl committed
1269
1270
1271
1272
                    replace_tokens = [item for sublist in replace_tokens for item in sublist]  # flatten list
                    replace_tokens[-1] = image_end_token
                    replace_str = "".join(replace_tokens)
                else:
chenych's avatar
chenych committed
1273
                    replace_str = self.image_token
luopl's avatar
luopl committed
1274

luopl's avatar
luopl committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
                content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1293
1294
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1295
1296
1297
1298
1299
        # ref to this commit https://github.com/huggingface/transformers/pull/35122
        # after transformers 4.49.0, the `image_sizes` is mandatory as an input parameter for Pixtral VisionEncoder forwarding.
        # it can be passed into `LlavaConditionalGeneration` as a parameter.
        if not is_transformers_version_greater_than("4.49.0"):
            mm_inputs.pop("image_sizes", None)
luopl's avatar
luopl committed
1300
1301
1302
        return mm_inputs


chenych's avatar
chenych committed
1303
1304
1305
1306
1307
@dataclass
class Qwen2AudioPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1308
1309
1310
1311
1312
1313
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1314
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1315
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1316
1317
1318
        bos_token: str = getattr(processor, "audio_bos_token")
        eos_token: str = getattr(processor, "audio_eos_token")
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1319
1320
1321
1322
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs([], [], audios, processor)
            if "feature_attention_mask" in mm_inputs:
                audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
chenych's avatar
chenych committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

        for message in messages:
            content = message["content"]
            while AUDIO_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    audio_length = audio_lengths.pop(0)
                    input_length = (audio_length - 1) // 2 + 1
                    audio_seqlen = (input_length - 2) // 2 + 1
                else:
                    audio_seqlen = 1

                content = content.replace(
                    AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
                )

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1354
1355
1356
1357
1358
1359
        self._validate_input(processor, images, videos, audios)
        return self._get_mm_inputs(images, videos, audios, processor)


@dataclass
class Qwen2VLPlugin(BasePlugin):
luopl's avatar
luopl committed
1360
1361
1362
1363
1364
    @override
    def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
        image = super()._preprocess_image(image, **kwargs)
        if min(image.width, image.height) < 28:
            width, height = max(image.width, 28), max(image.height, 28)
chenych's avatar
chenych committed
1365
            image = image.resize((width, height))
luopl's avatar
luopl committed
1366
1367
1368

        if image.width / image.height > 200:
            width, height = image.height * 180, image.height
chenych's avatar
chenych committed
1369
            image = image.resize((width, height))
luopl's avatar
luopl committed
1370
1371
1372

        if image.height / image.width > 200:
            width, height = image.width, image.width * 180
chenych's avatar
chenych committed
1373
            image = image.resize((width, height))
luopl's avatar
luopl committed
1374
1375
1376
1377

        return image

    @override
chenych's avatar
chenych committed
1378
    def _regularize_videos(
chenych's avatar
chenych committed
1379
1380
        self, videos: list["VideoInput"], **kwargs
    ) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
chenych's avatar
chenych committed
1381
        results, fps_per_video = [], []
luopl's avatar
luopl committed
1382
1383
1384
        for video in videos:
            container = av.open(video, "r")
            video_stream = next(stream for stream in container.streams if stream.type == "video")
chenych's avatar
chenych committed
1385
            sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
chenych's avatar
chenych committed
1386
            frames: list[ImageObject] = []
luopl's avatar
luopl committed
1387
1388
1389
1390
1391
1392
1393
1394
            container.seek(0)
            for frame_idx, frame in enumerate(container.decode(video_stream)):
                if frame_idx in sample_indices:
                    frames.append(frame.to_image())

            if len(frames) % 2 != 0:  # qwen2-vl requires even number of frames
                frames.append(frames[-1])

chenych's avatar
chenych committed
1395
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
1396
            results.append(frames)
chenych's avatar
chenych committed
1397
1398
1399
1400
            if video_stream.duration is None:
                fps_per_video.append(2.0)
            else:
                fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
luopl's avatar
luopl committed
1401

chenych's avatar
chenych committed
1402
        return {"videos": results, "fps_per_video": fps_per_video}
chenych's avatar
chenych committed
1403
1404
1405
1406

    @override
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
1407
1408
1409
1410
1411
1412
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
chenych's avatar
chenych committed
1413
1414
1415
1416
1417
1418
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
1419
            )["images"]
chenych's avatar
chenych committed
1420
1421
1422
            mm_inputs.update(image_processor(images, return_tensors="pt"))

        if len(videos) != 0:
chenych's avatar
chenych committed
1423
            video_data = self._regularize_videos(
chenych's avatar
chenych committed
1424
1425
1426
1427
1428
1429
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
chenych's avatar
chenych committed
1430
1431
1432
1433
            mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            if "second_per_grid_ts" in processor.model_input_names:
                mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
chenych's avatar
chenych committed
1434
1435

        return mm_inputs
luopl's avatar
luopl committed
1436
1437
1438
1439

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1440
1441
1442
1443
1444
1445
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1446
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1447
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1448
1449
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1450
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
1451

luopl's avatar
luopl committed
1452
        merge_length: int = getattr(image_processor, "merge_size") ** 2
chenych's avatar
chenych committed
1453
1454
1455
1456
1457
1458
1459
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
        else:
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
luopl's avatar
luopl committed
1460
1461
1462
1463

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1464
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1465
                content = content.replace(
luopl's avatar
luopl committed
1466
                    IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1467
1468
1469
1470
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
luopl's avatar
luopl committed
1471
                video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1472
                content = content.replace(
luopl's avatar
luopl committed
1473
                    VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1474
1475
1476
1477
1478
1479
1480
                )
                num_video_tokens += 1

            message["content"] = content

        return messages

chenych's avatar
chenych committed
1481
1482

class Qwen2OmniPlugin(Qwen2VLPlugin):
luopl's avatar
luopl committed
1483
    @override
chenych's avatar
chenych committed
1484
    def _get_mm_inputs(
luopl's avatar
luopl committed
1485
        self,
chenych's avatar
chenych committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            mm_inputs.update(image_processor(images, return_tensors="pt"))
chenych's avatar
chenych committed
1501

chenych's avatar
chenych committed
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
        if len(videos) != 0:
            video_dict = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
            mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            mm_inputs["video_second_per_grid"] = torch.tensor(
                [temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
            )

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            mm_inputs.update(
                feature_extractor(
                    audios,
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
1531

chenych's avatar
chenych committed
1532
        return mm_inputs
luopl's avatar
luopl committed
1533
1534
1535
1536

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1537
1538
1539
1540
1541
1542
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1543
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1544
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1545
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
1546
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1547
1548
1549
1550
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)

        merge_length = processor.image_processor.merge_size**2
        use_audio_in_video = getattr(processor, "use_audio_in_video", False)
chenych's avatar
chenych committed
1551
1552
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1553
1554
1555
1556
1557
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
            if "feature_attention_mask" in mm_inputs:
                input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
                audio_lengths = (input_lengths - 2) // 2 + 1
chenych's avatar
chenych committed
1558
1559
        else:
            mm_inputs = {}
chenych's avatar
chenych committed
1560
1561
1562
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
            audio_lengths = [None] * len(audios)
chenych's avatar
chenych committed
1563
1564
1565
1566

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1567
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
chenych's avatar
chenych committed
1568
                content = content.replace(
chenych's avatar
chenych committed
1569
                    IMAGE_PLACEHOLDER, f"<|vision_bos|>{self.image_token * image_seqlen}<|vision_eos|>", 1
chenych's avatar
chenych committed
1570
1571
                )
                num_image_tokens += 1
luopl's avatar
luopl committed
1572

chenych's avatar
chenych committed
1573
1574
1575
1576
1577
1578
            if (
                use_audio_in_video and len(audios) and len(videos)
            ):  # if use the audio of video # deal video token and audio token togather
                if len(videos) != len(audios):
                    raise ValueError(
                        f"Number of videos ({len(videos)}) must match number of audios ({len(audios)}) when using audio in video."
chenych's avatar
chenych committed
1579
                    )
luopl's avatar
luopl committed
1580
1581

                while VIDEO_PLACEHOLDER in content:
chenych's avatar
chenych committed
1582
1583
1584
1585
1586
1587
                    video_pos = content.find(VIDEO_PLACEHOLDER)
                    audio_pos = content.find(AUDIO_PLACEHOLDER, video_pos)
                    if audio_pos == -1 or audio_pos < video_pos:
                        raise ValueError(
                            f"Each {VIDEO_PLACEHOLDER} must be followed by an {AUDIO_PLACEHOLDER} when using audio in video."
                        )
chenych's avatar
chenych committed
1588

chenych's avatar
chenych committed
1589
1590
1591
1592
1593
1594
                    audio_t_index = torch.arange(audio_lengths[num_audio_tokens])
                    video_t_index = (
                        torch.arange(video_grid_thw[num_video_tokens][0])
                        .view(-1, 1, 1)
                        .expand(
                            -1,
chenych's avatar
chenych committed
1595
1596
                            video_grid_thw[num_video_tokens][1] // image_processor.merge_size,
                            video_grid_thw[num_video_tokens][2] // image_processor.merge_size,
chenych's avatar
chenych committed
1597
1598
1599
1600
1601
1602
1603
                        )
                        .flatten()
                        * mm_inputs["video_second_per_grid"][num_video_tokens]
                        * 25  # FIXME hardcode of position_id_per_seconds=25
                    ).long()
                    t_ntoken_per_chunk = 50  # FIXME hardcode: [25 * 2]
                    video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1604
                    audio_chunk_indices = processor.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1605
                    placeholder_string = ""
chenych's avatar
chenych committed
1606
                    placeholder_string += "<|vision_bos|>" + "<|audio_bos|>"
chenych's avatar
chenych committed
1607
1608
1609
1610
1611
                    for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
                        video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
                        audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
                        if video_chunk_index is not None:
                            placeholder_string += self.video_token * (video_chunk_index[1] - video_chunk_index[0])
chenych's avatar
chenych committed
1612

chenych's avatar
chenych committed
1613
1614
1615
                        if audio_chunk_index is not None:
                            placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])

chenych's avatar
chenych committed
1616
                    placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"
chenych's avatar
chenych committed
1617
1618
1619
1620
                    content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
                    content = content.replace(AUDIO_PLACEHOLDER, "", 1)
                    num_audio_tokens += 1
                    num_video_tokens += 1
chenych's avatar
chenych committed
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
            else:
                while AUDIO_PLACEHOLDER in content:
                    audio_seqlen = audio_lengths[num_audio_tokens] if self.expand_mm_tokens else 1
                    content = content.replace(
                        AUDIO_PLACEHOLDER, f"<|audio_bos|>{self.audio_token * audio_seqlen}<|audio_eos|>", 1
                    )
                    num_audio_tokens += 1

                while VIDEO_PLACEHOLDER in content:
                    video_seqlen = (
                        video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                    )
                    content = content.replace(
                        VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_seqlen}<|vision_eos|>", 1
                    )
                    num_video_tokens += 1
chenych's avatar
chenych committed
1637
1638
1639

            message["content"] = content

luopl's avatar
luopl committed
1640
1641
        return messages

chenych's avatar
chenych committed
1642
1643
1644

@dataclass
class VideoLlavaPlugin(BasePlugin):
luopl's avatar
luopl committed
1645
    @override
chenych's avatar
chenych committed
1646
    def process_messages(
luopl's avatar
luopl committed
1647
        self,
chenych's avatar
chenych committed
1648
1649
1650
1651
1652
1653
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1654
        self._validate_input(processor, images, videos, audios)
mashun1's avatar
mashun1 committed
1655
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
        num_frames = 0
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values_images" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values_images"][0]))
                num_frames = 1

            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs["pixel_values_videos"][0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim

            if "pixel_values_images" in mm_inputs or "pixel_values_videos" in mm_inputs:
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                video_seqlen = image_seqlen * num_frames
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen, video_seqlen = 1, 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
                num_video_tokens += 1

            content = content.replace("{{image}}", self.image_token)
            message["content"] = content.replace("{{video}}", self.video_token)

        return messages
luopl's avatar
luopl committed
1694
1695
1696
1697


PLUGINS = {
    "base": BasePlugin,
chenych's avatar
chenych committed
1698
    "gemma3": Gemma3Plugin,
chenych's avatar
chenych committed
1699
    "intern_vl": InternVLPlugin,
chenych's avatar
chenych committed
1700
    "kimi_vl": KimiVLPlugin,
chenych's avatar
chenych committed
1701
    "llama4": Llama4Plugin,
luopl's avatar
luopl committed
1702
1703
1704
    "llava": LlavaPlugin,
    "llava_next": LlavaNextPlugin,
    "llava_next_video": LlavaNextVideoPlugin,
luopl's avatar
luopl committed
1705
1706
    "minicpm_v": MiniCPMVPlugin,
    "mllama": MllamaPlugin,
luopl's avatar
luopl committed
1707
    "paligemma": PaliGemmaPlugin,
luopl's avatar
luopl committed
1708
    "pixtral": PixtralPlugin,
chenych's avatar
chenych committed
1709
    "qwen2_audio": Qwen2AudioPlugin,
chenych's avatar
chenych committed
1710
    "qwen2_omni": Qwen2OmniPlugin,
chenych's avatar
chenych committed
1711
    "qwen2_vl": Qwen2VLPlugin,
luopl's avatar
luopl committed
1712
1713
1714
1715
    "video_llava": VideoLlavaPlugin,
}


chenych's avatar
chenych committed
1716
1717
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
    r"""Register a multimodal plugin."""
chenych's avatar
chenych committed
1718
1719
1720
1721
1722
1723
    if name in PLUGINS:
        raise ValueError(f"Multimodal plugin {name} already exists.")

    PLUGINS[name] = plugin_class


luopl's avatar
luopl committed
1724
1725
1726
1727
def get_mm_plugin(
    name: str,
    image_token: Optional[str] = None,
    video_token: Optional[str] = None,
chenych's avatar
chenych committed
1728
    audio_token: Optional[str] = None,
luopl's avatar
luopl committed
1729
) -> "BasePlugin":
chenych's avatar
chenych committed
1730
    r"""Get plugin for multimodal inputs."""
chenych's avatar
chenych committed
1731
    if name not in PLUGINS:
luopl's avatar
luopl committed
1732
        raise ValueError(f"Multimodal plugin `{name}` not found.")
luopl's avatar
luopl committed
1733

chenych's avatar
chenych committed
1734
    return PLUGINS[name](image_token, video_token, audio_token)