mm_plugin.py 71.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/processing_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
18
import inspect
luopl's avatar
luopl committed
19
import math
chenych's avatar
chenych committed
20
import os
luopl's avatar
luopl committed
21
import re
luopl's avatar
luopl committed
22
from copy import deepcopy
chenych's avatar
chenych committed
23
from dataclasses import dataclass
luopl's avatar
luopl committed
24
from io import BytesIO
chenych's avatar
chenych committed
25
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
luopl's avatar
luopl committed
26
27

import numpy as np
luopl's avatar
luopl committed
28
import torch
chenych's avatar
chenych committed
29
from transformers.image_utils import get_image_size, is_valid_image, to_numpy_array
luopl's avatar
luopl committed
30
31
from typing_extensions import override

chenych's avatar
chenych committed
32
33
34
35
36
37
38
39
40
41
42
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
    is_librosa_available,
    is_pillow_available,
    is_pyav_available,
    is_transformers_version_greater_than,
)


if is_librosa_available():
    import librosa
luopl's avatar
luopl committed
43
44
45
46
47
48
49
50
51
52
53


if is_pillow_available():
    from PIL import Image
    from PIL.Image import Image as ImageObject


if is_pyav_available():
    import av


luopl's avatar
luopl committed
54
55
56
57
58
59
60
if is_transformers_version_greater_than("4.45.0"):
    from transformers.models.mllama.processing_mllama import (
        convert_sparse_cross_attention_mask_to_dense,
        get_cross_attention_token_mask,
    )


chenych's avatar
chenych committed
61
62
63
64
if is_transformers_version_greater_than("4.52.0"):
    from transformers.image_utils import make_flat_list_of_images
    from transformers.video_utils import make_batched_videos
elif is_transformers_version_greater_than("4.49.0"):
chenych's avatar
chenych committed
65
66
67
    from transformers.image_utils import make_batched_videos, make_flat_list_of_images


luopl's avatar
luopl committed
68
69
if TYPE_CHECKING:
    from av.stream import Stream
chenych's avatar
chenych committed
70
    from numpy.typing import NDArray
luopl's avatar
luopl committed
71
    from transformers import PreTrainedTokenizer, ProcessorMixin
chenych's avatar
chenych committed
72
    from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
luopl's avatar
luopl committed
73
74
75
76
77
78
    from transformers.image_processing_utils import BaseImageProcessor

    class EncodedImage(TypedDict):
        path: Optional[str]
        bytes: Optional[bytes]

chenych's avatar
chenych committed
79
    ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
chenych's avatar
chenych committed
80
    VideoInput = Union[str, BinaryIO, list[list[ImageInput]]]
chenych's avatar
chenych committed
81
82
83
84
85
86
87
88
89
90
    AudioInput = Union[str, BinaryIO, NDArray]

    class MMProcessor(ProcessorMixin):
        patch_size: int
        image_seq_length: int
        num_additional_image_tokens: int
        vision_feature_select_strategy: Literal["default", "full"]

        def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
            pass
luopl's avatar
luopl committed
91
92


chenych's avatar
chenych committed
93
94
95
96
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
    r"""Get paligemma token type ids for computing loss.

    It is slightly different with the original token type ids where the prompt part is 0.
luopl's avatar
luopl committed
97
98

    Returns:
chenych's avatar
chenych committed
99
100
        batch_token_type_ids: shape (batch_size, seq_length)

luopl's avatar
luopl committed
101
102
103
    """
    batch_token_type_ids = []
    for imglen, seqlen in zip(imglens, seqlens):
chenych's avatar
chenych committed
104
        image_seqlen = imglen * processor.image_seq_length
luopl's avatar
luopl committed
105
106
107
108
109
        batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))

    return batch_token_type_ids


chenych's avatar
chenych committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcessor"):
    r"""Get gemma3 token type ids for computing loss.

    Returns:
        batch_token_type_ids: shape (batch_size, seq_length)

    """
    image_token_id: int = getattr(processor, "image_token_id")
    batch_token_type_ids = []
    for token_ids in batch_ids:
        token_ids = np.array(token_ids)
        token_type_ids = np.zeros_like(token_ids)
        token_type_ids[token_ids == image_token_id] = 1
        batch_token_type_ids.append(token_type_ids.tolist())

    return batch_token_type_ids


def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
    r"""Make nested list of images."""
    batch_images = []
    for imglen in imglens:
        batch_images.append(images[:imglen])
        images = images[imglen:]

    return batch_images


chenych's avatar
chenych committed
138
139
140
141
142
def _check_video_is_nested_images(video: "VideoInput") -> bool:
    r"""Check if the video is nested images."""
    return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict)) for frame in video)


chenych's avatar
chenych committed
143
144
145
146
147
148
@dataclass
class MMPluginMixin:
    image_token: Optional[str]
    video_token: Optional[str]
    audio_token: Optional[str]
    expand_mm_tokens: bool = True
luopl's avatar
luopl committed
149
150
151

    def _validate_input(
        self,
chenych's avatar
chenych committed
152
153
154
155
        processor: Optional["MMProcessor"],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
156
    ) -> None:
chenych's avatar
chenych committed
157
158
159
160
161
162
        r"""Validate if this model accepts the input modalities."""
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        video_processor: BaseImageProcessor = getattr(
            processor, "video_processor", getattr(processor, "image_processor", None)
        )
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
luopl's avatar
luopl committed
163
        if len(images) != 0 and self.image_token is None:
luopl's avatar
luopl committed
164
165
166
            raise ValueError(
                "This model does not support image input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
167
168

        if len(videos) != 0 and self.video_token is None:
luopl's avatar
luopl committed
169
170
171
            raise ValueError(
                "This model does not support video input. Please check whether the correct `template` is used."
            )
luopl's avatar
luopl committed
172

chenych's avatar
chenych committed
173
174
175
176
177
178
        if len(audios) != 0 and self.audio_token is None:
            raise ValueError(
                "This model does not support audio input. Please check whether the correct `template` is used."
            )

        if self.image_token is not None and processor is None:
chenych's avatar
chenych committed
179
            raise ValueError("Processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
180
181

        if self.image_token is not None and image_processor is None:
chenych's avatar
chenych committed
182
            raise ValueError("Image processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
183

chenych's avatar
chenych committed
184
        if self.video_token is not None and video_processor is None:
chenych's avatar
chenych committed
185
            raise ValueError("Video processor was not found, please check and update your model file.")
chenych's avatar
chenych committed
186

chenych's avatar
chenych committed
187
        if self.audio_token is not None and feature_extractor is None:
chenych's avatar
chenych committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            raise ValueError("Audio feature extractor was not found, please check and update your model file.")

    def _validate_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
    ):
        r"""Validate if the number of images, videos and audios match the number of placeholders in messages."""
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
        for message in messages:
            num_image_tokens += message["content"].count(IMAGE_PLACEHOLDER)
            num_video_tokens += message["content"].count(VIDEO_PLACEHOLDER)
            num_audio_tokens += message["content"].count(AUDIO_PLACEHOLDER)

        if len(images) != num_image_tokens:
            raise ValueError(
                f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens in {messages}."
            )

        if len(videos) != num_video_tokens:
            raise ValueError(
                f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens in {messages}."
            )

        if len(audios) != num_audio_tokens:
            raise ValueError(
                f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens in {messages}."
            )
chenych's avatar
chenych committed
218
219
220
221

    def _preprocess_image(
        self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
    ) -> "ImageObject":
chenych's avatar
chenych committed
222
        r"""Pre-process a single image."""
chenych's avatar
chenych committed
223
224
        if (image.width * image.height) > image_max_pixels:
            resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
luopl's avatar
luopl committed
225
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
chenych's avatar
chenych committed
226
227
228
229
230
231
            image = image.resize((width, height))

        if (image.width * image.height) < image_min_pixels:
            resize_factor = math.sqrt(image_min_pixels / (image.width * image.height))
            width, height = int(image.width * resize_factor), int(image.height * resize_factor)
            image = image.resize((width, height))
luopl's avatar
luopl committed
232
233
234
235
236
237

        if image.mode != "RGB":
            image = image.convert("RGB")

        return image

chenych's avatar
chenych committed
238
239
    def _get_video_sample_indices(
        self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
chenych's avatar
chenych committed
240
241
    ) -> list[int]:
        r"""Compute video sample indices according to fps."""
luopl's avatar
luopl committed
242
        total_frames = video_stream.frames
chenych's avatar
chenych committed
243
244
245
        if total_frames == 0:  # infinite video
            return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)

chenych's avatar
chenych committed
246
        sample_frames = max(1, math.floor(float(video_stream.duration * video_stream.time_base) * video_fps))
luopl's avatar
luopl committed
247
        sample_frames = min(total_frames, video_maxlen, sample_frames)
chenych's avatar
chenych committed
248
        return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
luopl's avatar
luopl committed
249

chenych's avatar
chenych committed
250
251
    def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
        r"""Regularize images to avoid error. Including reading and pre-processing."""
luopl's avatar
luopl committed
252
253
        results = []
        for image in images:
chenych's avatar
chenych committed
254
            if isinstance(image, (str, BinaryIO)):
luopl's avatar
luopl committed
255
                image = Image.open(image)
luopl's avatar
luopl committed
256
257
            elif isinstance(image, bytes):
                image = Image.open(BytesIO(image))
luopl's avatar
luopl committed
258
259
260
261
262
263
264
            elif isinstance(image, dict):
                if image["bytes"] is not None:
                    image = Image.open(BytesIO(image["bytes"]))
                else:
                    image = Image.open(image["path"])

            if not isinstance(image, ImageObject):
chenych's avatar
chenych committed
265
                raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
luopl's avatar
luopl committed
266
267
268

            results.append(self._preprocess_image(image, **kwargs))

chenych's avatar
chenych committed
269
        return {"images": results}
luopl's avatar
luopl committed
270

chenych's avatar
chenych committed
271
272
    def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
        r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
luopl's avatar
luopl committed
273
274
        results = []
        for video in videos:
chenych's avatar
chenych committed
275
            frames: list[ImageObject] = []
chenych's avatar
chenych committed
276
277
278
279
280
281
282
283
284
285
286
287
288
            if _check_video_is_nested_images(video):
                for frame in video:
                    if not is_valid_image(frame) and not isinstance(frame, dict) and not os.path.exists(frame):
                        raise ValueError("Invalid image found in video frames.")
                frames = video
            else:
                container = av.open(video, "r")
                video_stream = next(stream for stream in container.streams if stream.type == "video")
                sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
                container.seek(0)
                for frame_idx, frame in enumerate(container.decode(video_stream)):
                    if frame_idx in sample_indices:
                        frames.append(frame.to_image())
luopl's avatar
luopl committed
289

chenych's avatar
chenych committed
290
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
291
292
            results.append(frames)

chenych's avatar
chenych committed
293
        return {"videos": results}
luopl's avatar
luopl committed
294

chenych's avatar
chenych committed
295
296
297
298
299
    def _regularize_audios(
        self, audios: list["AudioInput"], sampling_rate: float, **kwargs
    ) -> dict[str, Union[list["NDArray"], list[float]]]:
        r"""Regularizes audios to avoid error. Including reading and resampling."""
        results, sampling_rates = [], []
chenych's avatar
chenych committed
300
        for audio in audios:
chenych's avatar
chenych committed
301
302
            if isinstance(audio, (str, BinaryIO)):
                audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
chenych's avatar
chenych committed
303
304
305
306
307

            if not isinstance(audio, np.ndarray):
                raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")

            results.append(audio)
chenych's avatar
chenych committed
308
            sampling_rates.append(sampling_rate)
chenych's avatar
chenych committed
309

chenych's avatar
chenych committed
310
        return {"audios": results, "sampling_rates": sampling_rates}
chenych's avatar
chenych committed
311

luopl's avatar
luopl committed
312
313
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
314
315
316
317
318
319
320
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        imglens: Optional[list[int]] = None,
    ) -> dict[str, "torch.Tensor"]:
        r"""Process visual inputs.
luopl's avatar
luopl committed
321
322
323
324
325
326
327

        Returns: (llava and paligemma)
            pixel_values: tensor with shape (B, C, H, W)

        Returns: (qwen2-vl)
            pixel_values: tensor with shape (num_patches, patch_dim)
            image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
chenych's avatar
chenych committed
328
329
330
331
332
333
334
335
336
                            where num_patches == torch.prod(image_grid_thw)

        Returns: (mllama)
            pixel_values: tensor with shape
                          (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
                          For example, (2, 1, 4, 3, 560, 560).
            aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
            aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
            num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
luopl's avatar
luopl committed
337
338

        """
chenych's avatar
chenych committed
339
        mm_inputs = {}
luopl's avatar
luopl committed
340
        if len(images) != 0:
chenych's avatar
chenych committed
341
            image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
luopl's avatar
luopl committed
342
343
            images = self._regularize_images(
                images,
chenych's avatar
chenych committed
344
345
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            )["images"]
            if imglens is not None:  # if imglens are provided, make batched images
                images = _make_batched_images(images, imglens)

            image_processor_kwargs = {}
            if getattr(processor, "image_do_pan_and_scan", False):  # gemma3 image processor
                image_processor_kwargs.update(
                    {
                        "do_pan_and_scan": True,
                        "pan_and_scan_min_crop_size": 256,
                        "pan_and_scan_max_num_crops": 4,
                        "pan_and_scan_min_ratio_to_activate": 1.2,
                    }
                )

            mm_inputs.update(image_processor(images, return_tensors="pt", **image_processor_kwargs))
luopl's avatar
luopl committed
362
363

        if len(videos) != 0:
chenych's avatar
chenych committed
364
365
366
            video_processor: BaseImageProcessor = getattr(
                processor, "video_processor", getattr(processor, "image_processor", None)
            )
luopl's avatar
luopl committed
367
368
            videos = self._regularize_videos(
                videos,
chenych's avatar
chenych committed
369
370
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
luopl's avatar
luopl committed
371
                video_fps=getattr(processor, "video_fps", 2.0),
chenych's avatar
chenych committed
372
                video_maxlen=getattr(processor, "video_maxlen", 128),
chenych's avatar
chenych committed
373
            )["videos"]
chenych's avatar
chenych committed
374
375
376
377
378
379
            if "videos" in inspect.signature(video_processor.preprocess).parameters:  # for qwen2_vl and video_llava
                mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt"))
            else:  # for llava_next_video
                mm_inputs.update(video_processor(videos, return_tensors="pt"))

        if len(audios) != 0:
chenych's avatar
chenych committed
380
            feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
chenych's avatar
chenych committed
381
382
            audios = self._regularize_audios(
                audios,
chenych's avatar
chenych committed
383
384
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
chenych's avatar
chenych committed
385
386
387
            mm_inputs.update(
                feature_extractor(
                    audios,
chenych's avatar
chenych committed
388
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
chenych's avatar
chenych committed
389
390
391
392
393
394
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
395
396
397

        return mm_inputs

chenych's avatar
chenych committed
398
399
400

@dataclass
class BasePlugin(MMPluginMixin):
luopl's avatar
luopl committed
401
402
    def process_messages(
        self,
chenych's avatar
chenych committed
403
404
405
406
407
408
409
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        r"""Pre-process input messages before tokenization for VLMs."""
chenych's avatar
chenych committed
410
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
411
412
413
414
        return messages

    def process_token_ids(
        self,
chenych's avatar
chenych committed
415
416
417
418
419
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
420
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
421
422
423
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
        r"""Pre-process token ids after tokenization for VLMs."""
chenych's avatar
chenych committed
424
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
425
426
427
428
        return input_ids, labels

    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
429
430
431
432
433
434
435
436
437
438
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        r"""Build batched multimodal inputs for VLMs.
luopl's avatar
luopl committed
439
440
441
442

        Arguments:
            images: a list of image inputs, shape (num_images,)
            videos: a list of video inputs, shape (num_videos,)
chenych's avatar
chenych committed
443
            audios: a list of audio inputs, shape (num_audios,)
luopl's avatar
luopl committed
444
445
            imglens: number of images in each sample, shape (batch_size,)
            vidlens: number of videos in each sample, shape (batch_size,)
chenych's avatar
chenych committed
446
            audlens: number of audios in each sample, shape (batch_size,)
luopl's avatar
luopl committed
447
            batch_ids: token ids of input samples, shape (batch_size, seq_len)
luopl's avatar
luopl committed
448
            processor: a processor for pre-processing images and videos
chenych's avatar
chenych committed
449

luopl's avatar
luopl committed
450
        """
chenych's avatar
chenych committed
451
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
452
        return self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
453
454


chenych's avatar
chenych committed
455
@dataclass
chenych's avatar
chenych committed
456
class Gemma3Plugin(BasePlugin):
luopl's avatar
luopl committed
457
458
459
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
460
461
462
463
464
465
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
466
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
467
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
468
469
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
470
471
472
473
474
475
476
477
        boi_token: str = getattr(processor, "boi_token")
        full_image_sequence: str = getattr(processor, "full_image_sequence")
        image_str = full_image_sequence if self.expand_mm_tokens else boi_token

        do_pan_and_scan: bool = getattr(processor, "image_do_pan_and_scan", False)
        if do_pan_and_scan:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

luopl's avatar
luopl committed
478
479
480
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
481
482
483
484
485
486
487
488
489
                if do_pan_and_scan:
                    image_placeholder_str = (
                        "Here is the original image {{image}} and here are some crops to help you see better "
                        + " ".join(["{{image}}"] * mm_inputs["num_crops"][0][num_image_tokens])
                    )
                else:
                    image_placeholder_str = "{{image}}"

                content = content.replace(IMAGE_PLACEHOLDER, image_placeholder_str, 1)
luopl's avatar
luopl committed
490
                num_image_tokens += 1
luopl's avatar
luopl committed
491

chenych's avatar
chenych committed
492
            message["content"] = content.replace("{{image}}", image_str)
luopl's avatar
luopl committed
493
494
495
496
497
498

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
499
500
501
502
503
504
505
506
507
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
508
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
509
510
511
512
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("num_crops", None)
        mm_inputs["token_type_ids"] = _get_gemma3_token_type_ids(batch_ids, processor)
        return mm_inputs
luopl's avatar
luopl committed
513
514


chenych's avatar
chenych committed
515
@dataclass
chenych's avatar
chenych committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
class InternVLPlugin(BasePlugin):
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "ProcessorMixin",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        image_processor_kwargs = {}
        if getattr(processor, "crop_to_patches", False):
            image_processor_kwargs.update(
                {
                    "crop_to_patches": True,
                    "max_patches": 12,
                    "min_patches": 1,
                }
            )

        mm_inputs = {}
        image_video_patches = []

chenych's avatar
chenych committed
540
        if len(images) != 0:
chenych's avatar
chenych committed
541
542
543
544
545
546
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 1024 * 1024),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]

chenych's avatar
chenych committed
547
        if len(videos) != 0:
chenych's avatar
chenych committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]

        if len(images) != 0:
            images = make_flat_list_of_images(images)
            image_inputs = image_processor(images=images, return_tensors="pt", **image_processor_kwargs)
            image_num_patches = image_inputs.pop("num_patches")
            image_pixel_values = image_inputs.pop("pixel_values")
            image_num_patches_indices = np.cumsum(image_num_patches)

        if len(videos) != 0:
            videos = make_batched_videos(videos)
            num_frames_per_video = [len(video) for video in videos]
            patch_indices = np.cumsum(num_frames_per_video)
            image_processor_kwargs["crop_to_patches"] = False
            video_inputs = image_processor(images=videos, return_tensors="pt", **image_processor_kwargs)
            video_num_patches = video_inputs.pop("num_patches")
            video_pixel_values = video_inputs.pop("pixel_values")
            video_num_patches_indices = np.cumsum(video_num_patches)

        # NOT SUPPORT IMAGE VIDEO INTERLEAVED
        if len(images) != 0 and image_pixel_values is not None:
            for i in range(len(images)):
                start_index = image_num_patches_indices[i - 1] if i > 0 else 0
                end_index = image_num_patches_indices[i]
                image_video_patches.append(image_pixel_values[start_index:end_index])

        if len(videos) != 0 and video_pixel_values is not None:
            patch_indices_with_prefix = [0] + list(patch_indices)
            for i in range(len(videos)):
                current_patch_index = patch_indices_with_prefix[i]
                end_patch_index = patch_indices_with_prefix[i + 1]
                start_index = video_num_patches_indices[current_patch_index - 1] if i > 0 else 0
                end_index = video_num_patches_indices[end_patch_index - 1]
                image_video_patches.append(video_pixel_values[start_index:end_index])

        if len(images) != 0 or len(videos) != 0:
            mm_inputs["pixel_values"] = torch.cat(image_video_patches, dim=0)

        if len(images) != 0:
            mm_inputs.update({"image_num_patches": image_num_patches})

        if len(videos) != 0:
            mm_inputs.update({"video_patch_indices": patch_indices})
            mm_inputs.update({"video_num_patches": video_num_patches})

        return mm_inputs

    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["ProcessorMixin"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
611
612
        self._validate_messages(messages, images, videos, audios)
        num_image_tokens, num_video_tokens = 0, 0
chenych's avatar
chenych committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
        messages = deepcopy(messages)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)

        image_pixel_patch_list = mm_inputs.get("image_num_patches")  # pathes of images
        video_num_patches = mm_inputs.get("video_num_patches")  # all patches for frames of videos
        video_patch_indices = mm_inputs.get("video_patch_indices")  # num frames of per video

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
                    1,
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
                end_patch_index = video_patch_indices[num_video_tokens]
                num_patches = list(video_num_patches[current_patch_index:end_patch_index])
                video_replaced_prompt = "\n".join(
                    f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
                    for i in range(len(num_patches))
                )
                content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
                num_video_tokens += 1

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["ProcessorMixin"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
        mm_inputs.pop("image_num_patches", None)
        mm_inputs.pop("video_patch_indices", None)
        mm_inputs.pop("video_num_patches", None)
        return mm_inputs


chenych's avatar
chenych committed
666
667
668
669
class KimiVLPlugin(BasePlugin):
    @override
    def process_messages(self, messages, images, videos, audios, processor):
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
670
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
671
672
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
673
674
675
            image_grid_hws = mm_inputs.get("image_grid_hws", [])
        else:
            image_grid_hws = [None] * len(images)
chenych's avatar
chenych committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

        num_image_tokens = 0
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        merge_length = math.prod(image_processor.merge_kernel_size)
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                image_seqlen = image_grid_hws[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                content = content.replace(
                    IMAGE_PLACEHOLDER,
                    f"<|media_start|>image<|media_content|>{self.image_token * image_seqlen}<|media_end|>",
                    1,
                )
                num_image_tokens += 1

            message["content"] = content

        return messages


chenych's avatar
chenych committed
697
@dataclass
chenych's avatar
chenych committed
698
class Llama4Plugin(BasePlugin):
luopl's avatar
luopl committed
699
700
701
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
702
703
704
705
706
707
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
708
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
709
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
710
711
712
713
714
715
716
717
718
719
720
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
                num_patches_per_chunk = int(
                    (image_height // processor.patch_size)
                    * (image_width // processor.patch_size)
                    // processor.downsample_ratio
                )
                aspect_ratios = mm_inputs.pop("aspect_ratios")

luopl's avatar
luopl committed
721
722
        num_image_tokens = 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
723
724
725
        for message in messages:
            content = message["content"]
            if self.expand_mm_tokens:
chenych's avatar
chenych committed
726
                placeholder_count = content.count(IMAGE_PLACEHOLDER)
chenych's avatar
chenych committed
727
728
729
730
731
732
733
734
735
736
737
738
                prompt_splits = content.split(IMAGE_PLACEHOLDER)
                new_content = []
                for local_image_index, split_part in enumerate(prompt_splits):
                    new_content.append(split_part)
                    if local_image_index < placeholder_count:
                        tokens_for_this_image = processor._prompt_split_image(
                            aspect_ratios[num_image_tokens], num_patches_per_chunk
                        )
                        num_image_tokens += 1
                        new_content.append(tokens_for_this_image)

                content = "".join(new_content)
chenych's avatar
chenych committed
739
740
            else:
                content = content.replace(IMAGE_PLACEHOLDER, self.image_token)
chenych's avatar
chenych committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
759
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        mm_inputs.pop("aspect_ratios", None)
        return mm_inputs


@dataclass
class LlavaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
776
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0]))
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen = 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


@dataclass
class LlavaNextPlugin(BasePlugin):
    @override
    def process_messages(
        self,
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
812
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
813
814
815
816
817
818
819
        num_image_tokens = 0
        messages = deepcopy(messages)
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
luopl's avatar
luopl committed
820

luopl's avatar
luopl committed
821
822
        for message in messages:
            content = message["content"]
luopl's avatar
luopl committed
823
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
824
825
826
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
chenych's avatar
chenych committed
827
                    if processor.vision_feature_select_strategy == "default":
luopl's avatar
luopl committed
828
829
830
                        image_seqlen -= 1
                else:
                    image_seqlen = 1
luopl's avatar
luopl committed
831
832

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
luopl's avatar
luopl committed
833
                num_image_tokens += 1
luopl's avatar
luopl committed
834
835
836
837
838
839

            message["content"] = content.replace("{{image}}", self.image_token)

        return messages


chenych's avatar
chenych committed
840
@dataclass
luopl's avatar
luopl committed
841
842
843
844
class LlavaNextVideoPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
845
846
847
848
849
850
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
851
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
852
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
853
        messages = deepcopy(messages)
chenych's avatar
chenych committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                image_sizes = iter(mm_inputs["image_sizes"].tolist())
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    orig_height, orig_width = next(image_sizes)
                    image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
                    if processor.vision_feature_select_strategy == "default":
                        image_seqlen -= 1
                else:
                    image_seqlen = 1

                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)

            message["content"] = content.replace("{{image}}", self.image_token)

        if self.expand_mm_tokens:
            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim
chenych's avatar
chenych committed
880
881
                image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
                video_seqlen = image_seqlen // 4 * num_frames  # divide by 4 needed for avg pooling layer
chenych's avatar
chenych committed
882
883
        else:
            video_seqlen = 1
chenych's avatar
chenych committed
884

chenych's avatar
chenych committed
885
886
887
888
        for message in messages:
            content = message["content"]
            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
luopl's avatar
luopl committed
889

chenych's avatar
chenych committed
890
            message["content"] = content.replace("{{video}}", self.video_token)
luopl's avatar
luopl committed
891
892
893
894

        return messages


chenych's avatar
chenych committed
895
@dataclass
luopl's avatar
luopl committed
896
class MiniCPMVPlugin(BasePlugin):
chenych's avatar
chenych committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    @override
    def _get_mm_inputs(
        self,
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
        **kwargs,
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            if "valid_image_nums_ls" in kwargs:
                valid_image_nums_ls = kwargs["valid_image_nums_ls"]
                new_images = []
                idx = 0
                for valid_image_nums in valid_image_nums_ls:
                    new_images.append(images[idx : idx + valid_image_nums])
                    idx += valid_image_nums

                images = new_images

            image_inputs = image_processor(
                images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
            )
            mm_inputs.update(image_inputs)

        if len(videos) != 0:
            videos = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )["videos"]
            video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
            mm_inputs.update(video_inputs)

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            if "valid_audio_nums_ls" in kwargs:
                valid_audio_nums_ls = kwargs["valid_audio_nums_ls"]
                audios_ls = []
                idx = 0
                for valid_audio_nums in valid_audio_nums_ls:
                    audios_ls.append(audios[idx : idx + valid_audio_nums])
                    idx += valid_audio_nums
            else:
                audios_ls = [audios]

            audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
                audios_ls,
                chunk_input=True,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )
            audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
            mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
            if kwargs.get("ret_phs", False):
                mm_inputs.update({"audio_phs": audio_phs})

        return mm_inputs

luopl's avatar
luopl committed
967
968
969
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
970
971
972
973
974
975
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
976
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
977
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
978
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
979
        messages = deepcopy(messages)
chenych's avatar
chenych committed
980
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
981
        mm_inputs, audio_inputs = {}, {}
luopl's avatar
luopl committed
982
983
984
985
986
987
        if len(images) != 0 and len(videos) != 0:
            raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")

        if len(videos) != 0:
            max_slice_nums = 2
            use_image_id = False
chenych's avatar
chenych committed
988
            mm_inputs = self._get_mm_inputs([], videos, [], processor)
luopl's avatar
luopl committed
989
990
991
992
        else:
            max_slice_nums = image_processor.max_slice_nums
            use_image_id = image_processor.use_image_id

chenych's avatar
chenych committed
993
        for i, message in enumerate(messages):
luopl's avatar
luopl committed
994
995
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
996
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
luopl's avatar
luopl committed
997
                num_image_tokens += 1
luopl's avatar
luopl committed
998
999
1000
1001
1002
1003

            while VIDEO_PLACEHOLDER in content:
                video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1
                content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
                num_video_tokens += 1

chenych's avatar
chenych committed
1004
1005
1006
1007
1008
1009
1010
            while AUDIO_PLACEHOLDER in content:
                content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
                num_audio_tokens += 1

            message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
                "{{audio}}", "(<audio>./</audio>)"
            )
luopl's avatar
luopl committed
1011

chenych's avatar
chenych committed
1012
        if len(images):
chenych's avatar
chenych committed
1013
1014
            mm_inputs = self._get_mm_inputs(images, [], [], processor)

chenych's avatar
chenych committed
1015
        if len(audios):
chenych's avatar
chenych committed
1016
            audio_inputs = self._get_mm_inputs([], [], audios, processor, ret_phs=True)
luopl's avatar
luopl committed
1017

chenych's avatar
chenych committed
1018
        if self.expand_mm_tokens and mm_inputs:
luopl's avatar
luopl committed
1019
1020
            pattern = "(<image>./</image>)"
            image_sizes = mm_inputs["image_sizes"]
chenych's avatar
chenych committed
1021
            idx = 0
luopl's avatar
luopl committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            for index, message in enumerate(messages):
                text = message["content"]
                image_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(image_tags)):
                    final_text = (
                        final_text
                        + text_chunks[i]
                        + image_processor.get_slice_image_placeholder(
chenych's avatar
chenych committed
1032
                            image_sizes[0][idx], idx, max_slice_nums, use_image_id
luopl's avatar
luopl committed
1033
1034
                        )
                    )
chenych's avatar
chenych committed
1035
1036
1037
1038
1039
                    idx += 1

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

chenych's avatar
chenych committed
1040
        if self.expand_mm_tokens and audio_inputs:
chenych's avatar
chenych committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
            pattern = "(<audio>./</audio>)"
            idx = 0
            for index, message in enumerate(messages):
                text = message["content"]
                audio_tags = re.findall(pattern, text)
                text_chunks = text.split(pattern)
                final_text = ""
                for i in range(len(audio_tags)):
                    audio_placeholder = audio_inputs["audio_phs"][0][idx]
                    final_text = final_text + text_chunks[i] + audio_placeholder
                    idx += 1
luopl's avatar
luopl committed
1052
1053
1054
1055
1056
1057
1058
1059
1060

                final_text += text_chunks[-1]
                messages[index]["content"] = final_text

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1070
1071
        self._validate_input(processor, images, videos, audios)
        # image bound
luopl's avatar
luopl committed
1072
1073
        image_bounds_list = []
        valid_image_nums_ls = []
chenych's avatar
chenych committed
1074
        for i, input_ids in enumerate(batch_ids):
luopl's avatar
luopl committed
1075
1076
1077
1078
1079
1080
1081
1082
            input_ids_ = torch.tensor(input_ids)
            start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
                input_ids_ == processor.tokenizer.slice_start_id
            )
            end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
            image_start_tokens = torch.where(start_cond)[0]
            image_start_tokens += 1
            image_end_tokens = torch.where(end_cond)[0]
chenych's avatar
chenych committed
1083
            valid_image_nums_ls.append(imglens[i])
luopl's avatar
luopl committed
1084
1085
            image_bounds = torch.hstack(
                [
chenych's avatar
chenych committed
1086
1087
                    image_start_tokens.unsqueeze(-1),
                    image_end_tokens.unsqueeze(-1),
luopl's avatar
luopl committed
1088
1089
1090
1091
                ]
            )
            image_bounds_list.append(image_bounds)

chenych's avatar
chenych committed
1092
1093
1094
1095
1096
        mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
        if "tgt_sizes" not in mm_inputs:
            dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
            mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})

luopl's avatar
luopl committed
1097
        mm_inputs.update({"image_bound": image_bounds_list})
chenych's avatar
chenych committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

        if len(audios) > 0:
            # audio bound
            audio_bounds_ls = []
            spk_bounds_ls = []
            valid_audio_nums_ls = []

            for input_ids, audiolen in zip(batch_ids, audlens):
                input_ids_ = torch.tensor(input_ids)
                audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
                audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
                assert len(audio_start_idx) == len(audio_end_idx)
                audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
                audio_bounds_ls.append(audio_bounds)
                valid_audio_nums_ls.append(audiolen)

                spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
                spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
                assert len(spk_start_idx) == len(spk_end_idx)
                spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
                spk_bounds_ls.append(spk_bounds)

            audio_inputs = self._get_mm_inputs([], [], audios, processor, valid_audio_nums_ls=valid_audio_nums_ls)
            mm_inputs.update(audio_inputs)
            mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})

luopl's avatar
luopl committed
1124
1125
1126
        return mm_inputs


chenych's avatar
chenych committed
1127
@dataclass
luopl's avatar
luopl committed
1128
1129
1130
1131
class MllamaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1132
1133
1134
1135
1136
1137
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1138
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1139
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            num_image_tokens += content.count(IMAGE_PLACEHOLDER)
            message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token)

        return messages

chenych's avatar
chenych committed
1149
    @override
luopl's avatar
luopl committed
1150
1151
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1161
1162
1163
1164
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
        if mm_inputs:
            num_tiles = mm_inputs.pop("num_tiles")
chenych's avatar
chenych committed
1165
1166
            image_token_id: int = getattr(processor, "image_token_id")
            max_image_tiles: int = getattr(processor.image_processor, "max_image_tiles")
chenych's avatar
chenych committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
            cross_attention_token_mask = [
                get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids
            ]
            mm_inputs["cross_attention_mask"] = torch.from_numpy(
                convert_sparse_cross_attention_mask_to_dense(
                    cross_attention_token_mask,
                    num_tiles=num_tiles,
                    max_num_tiles=max_image_tiles,
                    length=max(len(input_ids) for input_ids in batch_ids),
                )
            )  # shape: (batch_size, length, max_num_images, max_num_tiles)

luopl's avatar
luopl committed
1179
1180
1181
        return mm_inputs


chenych's avatar
chenych committed
1182
@dataclass
luopl's avatar
luopl committed
1183
1184
1185
1186
class PaliGemmaPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1187
1188
1189
1190
1191
1192
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1193
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1194
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1195
1196
1197
1198
1199
        num_image_tokens = 0
        messages = deepcopy(messages)
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1200
                content = content.replace(IMAGE_PLACEHOLDER, "", 1)
luopl's avatar
luopl committed
1201
                num_image_tokens += 1
luopl's avatar
luopl committed
1202

chenych's avatar
chenych committed
1203
            message["content"] = content
luopl's avatar
luopl committed
1204
1205
1206
1207
1208
1209

        return messages

    @override
    def process_token_ids(
        self,
chenych's avatar
chenych committed
1210
1211
1212
1213
1214
        input_ids: list[int],
        labels: Optional[list[int]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
luopl's avatar
luopl committed
1215
        tokenizer: "PreTrainedTokenizer",
chenych's avatar
chenych committed
1216
1217
        processor: Optional["MMProcessor"],
    ) -> tuple[list[int], Optional[list[int]]]:
chenych's avatar
chenych committed
1218
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1219
        num_images = len(images)
chenych's avatar
chenych committed
1220
        image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0  # skip mm token
luopl's avatar
luopl committed
1221
        image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
chenych's avatar
chenych committed
1222
        input_ids = [image_token_id] * num_images * image_seqlen + input_ids
luopl's avatar
luopl committed
1223
        if labels is not None:
chenych's avatar
chenych committed
1224
            labels = [IGNORE_INDEX] * num_images * image_seqlen + labels
luopl's avatar
luopl committed
1225
1226
1227
1228
1229
1230

        return input_ids, labels

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1231
1232
1233
1234
1235
1236
1237
1238
1239
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1240
        self._validate_input(processor, images, videos, audios)
luopl's avatar
luopl committed
1241
        seqlens = [len(input_ids) for input_ids in batch_ids]
chenych's avatar
chenych committed
1242
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
luopl's avatar
luopl committed
1243
1244
1245
1246
        mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
        return mm_inputs


chenych's avatar
chenych committed
1247
@dataclass
luopl's avatar
luopl committed
1248
1249
1250
1251
class PixtralPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1252
1253
1254
1255
1256
1257
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1258
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1259
        self._validate_messages(messages, images, videos, audios)
luopl's avatar
luopl committed
1260
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1261
1262
1263
1264
1265
1266
1267
1268
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values" in mm_inputs:
                # BC for transformers < 4.49.0
                if isinstance(mm_inputs["image_sizes"], list):
                    image_sizes = iter(mm_inputs["image_sizes"][0])
                else:
                    image_sizes = iter(mm_inputs["image_sizes"].tolist())
chenych's avatar
chenych committed
1269

chenych's avatar
chenych committed
1270
1271
                image_break_token: str = getattr(processor, "image_break_token")
                image_end_token: str = getattr(processor, "image_end_token")
chenych's avatar
chenych committed
1272

luopl's avatar
luopl committed
1273
1274
1275
        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1276
                if self.expand_mm_tokens:
chenych's avatar
chenych committed
1277
                    height, width = next(image_sizes)
chenych's avatar
chenych committed
1278
1279
1280
                    num_height_tokens = height // processor.patch_size
                    num_width_tokens = width // processor.patch_size
                    replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
luopl's avatar
luopl committed
1281
1282
1283
1284
                    replace_tokens = [item for sublist in replace_tokens for item in sublist]  # flatten list
                    replace_tokens[-1] = image_end_token
                    replace_str = "".join(replace_tokens)
                else:
chenych's avatar
chenych committed
1285
                    replace_str = self.image_token
luopl's avatar
luopl committed
1286

luopl's avatar
luopl committed
1287
1288
1289
1290
1291
1292
1293
1294
1295
                content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1305
1306
        self._validate_input(processor, images, videos, audios)
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1307
1308
1309
1310
1311
        # ref to this commit https://github.com/huggingface/transformers/pull/35122
        # after transformers 4.49.0, the `image_sizes` is mandatory as an input parameter for Pixtral VisionEncoder forwarding.
        # it can be passed into `LlavaConditionalGeneration` as a parameter.
        if not is_transformers_version_greater_than("4.49.0"):
            mm_inputs.pop("image_sizes", None)
luopl's avatar
luopl committed
1312
1313
1314
        return mm_inputs


chenych's avatar
chenych committed
1315
1316
1317
1318
1319
@dataclass
class Qwen2AudioPlugin(BasePlugin):
    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1320
1321
1322
1323
1324
1325
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1326
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1327
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1328
1329
1330
        bos_token: str = getattr(processor, "audio_bos_token")
        eos_token: str = getattr(processor, "audio_eos_token")
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1331
1332
1333
1334
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs([], [], audios, processor)
            if "feature_attention_mask" in mm_inputs:
                audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
chenych's avatar
chenych committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

        for message in messages:
            content = message["content"]
            while AUDIO_PLACEHOLDER in content:
                if self.expand_mm_tokens:
                    audio_length = audio_lengths.pop(0)
                    input_length = (audio_length - 1) // 2 + 1
                    audio_seqlen = (input_length - 2) // 2 + 1
                else:
                    audio_seqlen = 1

                content = content.replace(
                    AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
                )

            message["content"] = content

        return messages

    @override
    def get_mm_inputs(
        self,
chenych's avatar
chenych committed
1357
1358
1359
1360
1361
1362
1363
1364
1365
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        imglens: list[int],
        vidlens: list[int],
        audlens: list[int],
        batch_ids: list[list[int]],
        processor: Optional["MMProcessor"],
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
chenych's avatar
chenych committed
1366
1367
1368
1369
1370
1371
        self._validate_input(processor, images, videos, audios)
        return self._get_mm_inputs(images, videos, audios, processor)


@dataclass
class Qwen2VLPlugin(BasePlugin):
luopl's avatar
luopl committed
1372
1373
1374
1375
1376
    @override
    def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
        image = super()._preprocess_image(image, **kwargs)
        if min(image.width, image.height) < 28:
            width, height = max(image.width, 28), max(image.height, 28)
chenych's avatar
chenych committed
1377
            image = image.resize((width, height))
luopl's avatar
luopl committed
1378
1379
1380

        if image.width / image.height > 200:
            width, height = image.height * 180, image.height
chenych's avatar
chenych committed
1381
            image = image.resize((width, height))
luopl's avatar
luopl committed
1382
1383
1384

        if image.height / image.width > 200:
            width, height = image.width, image.width * 180
chenych's avatar
chenych committed
1385
            image = image.resize((width, height))
luopl's avatar
luopl committed
1386
1387
1388
1389

        return image

    @override
chenych's avatar
chenych committed
1390
    def _regularize_videos(
chenych's avatar
chenych committed
1391
1392
        self, videos: list["VideoInput"], **kwargs
    ) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
chenych's avatar
chenych committed
1393
        results, fps_per_video = [], []
luopl's avatar
luopl committed
1394
        for video in videos:
chenych's avatar
chenych committed
1395
            frames: list[ImageObject] = []
chenych's avatar
chenych committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
            if _check_video_is_nested_images(video):
                for frame in video:
                    if not is_valid_image(frame) and not isinstance(frame, dict) and not os.path.exists(frame):
                        raise ValueError("Invalid image found in video frames.")

                frames = video
                fps_per_video.append(kwargs.get("video_fps", 2.0))
            else:
                container = av.open(video, "r")
                video_stream = next(stream for stream in container.streams if stream.type == "video")
                sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
                container.seek(0)
                for frame_idx, frame in enumerate(container.decode(video_stream)):
                    if frame_idx in sample_indices:
                        frames.append(frame.to_image())

                if video_stream.duration is None:
                    fps_per_video.append(kwargs.get("video_fps", 2.0))
                else:
                    fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
luopl's avatar
luopl committed
1416

chenych's avatar
chenych committed
1417
            if len(frames) % 2 != 0:
luopl's avatar
luopl committed
1418
1419
                frames.append(frames[-1])

chenych's avatar
chenych committed
1420
            frames = self._regularize_images(frames, **kwargs)["images"]
luopl's avatar
luopl committed
1421
1422
            results.append(frames)

chenych's avatar
chenych committed
1423
        return {"videos": results, "fps_per_video": fps_per_video}
chenych's avatar
chenych committed
1424
1425
1426
1427

    @override
    def _get_mm_inputs(
        self,
chenych's avatar
chenych committed
1428
1429
1430
1431
1432
1433
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
chenych's avatar
chenych committed
1434
1435
1436
1437
1438
1439
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
chenych's avatar
chenych committed
1440
            )["images"]
chenych's avatar
chenych committed
1441
1442
1443
            mm_inputs.update(image_processor(images, return_tensors="pt"))

        if len(videos) != 0:
chenych's avatar
chenych committed
1444
            video_data = self._regularize_videos(
chenych's avatar
chenych committed
1445
1446
1447
1448
1449
1450
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
chenych's avatar
chenych committed
1451
1452
1453
1454
            mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            if "second_per_grid_ts" in processor.model_input_names:
                mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
chenych's avatar
chenych committed
1455
1456

        return mm_inputs
luopl's avatar
luopl committed
1457
1458
1459
1460

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1461
1462
1463
1464
1465
1466
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1467
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1468
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1469
1470
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1471
        image_processor: BaseImageProcessor = getattr(processor, "image_processor")
chenych's avatar
chenych committed
1472

luopl's avatar
luopl committed
1473
        merge_length: int = getattr(image_processor, "merge_size") ** 2
chenych's avatar
chenych committed
1474
1475
1476
1477
1478
1479
1480
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
        else:
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
luopl's avatar
luopl committed
1481
1482
1483
1484

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
luopl's avatar
luopl committed
1485
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1486
                content = content.replace(
luopl's avatar
luopl committed
1487
                    IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1488
1489
1490
1491
                )
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
luopl's avatar
luopl committed
1492
                video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
luopl's avatar
luopl committed
1493
                content = content.replace(
luopl's avatar
luopl committed
1494
                    VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
luopl's avatar
luopl committed
1495
1496
1497
1498
1499
1500
1501
                )
                num_video_tokens += 1

            message["content"] = content

        return messages

chenych's avatar
chenych committed
1502
1503

class Qwen2OmniPlugin(Qwen2VLPlugin):
luopl's avatar
luopl committed
1504
    @override
chenych's avatar
chenych committed
1505
    def _get_mm_inputs(
luopl's avatar
luopl committed
1506
        self,
chenych's avatar
chenych committed
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: "MMProcessor",
    ) -> dict[str, "torch.Tensor"]:
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
        feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
        mm_inputs = {}
        if len(images) != 0:
            images = self._regularize_images(
                images,
                image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
                image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
            )["images"]
            mm_inputs.update(image_processor(images, return_tensors="pt"))
chenych's avatar
chenych committed
1522

chenych's avatar
chenych committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
        if len(videos) != 0:
            video_dict = self._regularize_videos(
                videos,
                image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
                image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
                video_fps=getattr(processor, "video_fps", 2.0),
                video_maxlen=getattr(processor, "video_maxlen", 128),
            )
            mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
            temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
            mm_inputs["video_second_per_grid"] = torch.tensor(
                [temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
            )

        if len(audios) != 0:
            audios = self._regularize_audios(
                audios,
                sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
            )["audios"]
            mm_inputs.update(
                feature_extractor(
                    audios,
                    sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                )
            )
            mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")  # prevent conflicts
luopl's avatar
luopl committed
1552

chenych's avatar
chenych committed
1553
        return mm_inputs
luopl's avatar
luopl committed
1554
1555
1556
1557

    @override
    def process_messages(
        self,
chenych's avatar
chenych committed
1558
1559
1560
1561
1562
1563
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1564
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1565
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1566
        num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
luopl's avatar
luopl committed
1567
        messages = deepcopy(messages)
chenych's avatar
chenych committed
1568
1569
1570
1571
        image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)

        merge_length = processor.image_processor.merge_size**2
        use_audio_in_video = getattr(processor, "use_audio_in_video", False)
chenych's avatar
chenych committed
1572
1573
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
chenych's avatar
chenych committed
1574
1575
1576
1577
1578
            image_grid_thw = mm_inputs.get("image_grid_thw", [])
            video_grid_thw = mm_inputs.get("video_grid_thw", [])
            if "feature_attention_mask" in mm_inputs:
                input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
                audio_lengths = (input_lengths - 2) // 2 + 1
chenych's avatar
chenych committed
1579
1580
        else:
            mm_inputs = {}
chenych's avatar
chenych committed
1581
1582
1583
            image_grid_thw = [None] * len(images)
            video_grid_thw = [None] * len(videos)
            audio_lengths = [None] * len(audios)
chenych's avatar
chenych committed
1584
1585
1586
1587

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
chenych's avatar
chenych committed
1588
                image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
chenych's avatar
chenych committed
1589
                content = content.replace(
chenych's avatar
chenych committed
1590
                    IMAGE_PLACEHOLDER, f"<|vision_bos|>{self.image_token * image_seqlen}<|vision_eos|>", 1
chenych's avatar
chenych committed
1591
1592
                )
                num_image_tokens += 1
luopl's avatar
luopl committed
1593

chenych's avatar
chenych committed
1594
1595
1596
1597
1598
1599
            if (
                use_audio_in_video and len(audios) and len(videos)
            ):  # if use the audio of video # deal video token and audio token togather
                if len(videos) != len(audios):
                    raise ValueError(
                        f"Number of videos ({len(videos)}) must match number of audios ({len(audios)}) when using audio in video."
chenych's avatar
chenych committed
1600
                    )
luopl's avatar
luopl committed
1601
1602

                while VIDEO_PLACEHOLDER in content:
chenych's avatar
chenych committed
1603
1604
1605
1606
1607
1608
                    video_pos = content.find(VIDEO_PLACEHOLDER)
                    audio_pos = content.find(AUDIO_PLACEHOLDER, video_pos)
                    if audio_pos == -1 or audio_pos < video_pos:
                        raise ValueError(
                            f"Each {VIDEO_PLACEHOLDER} must be followed by an {AUDIO_PLACEHOLDER} when using audio in video."
                        )
chenych's avatar
chenych committed
1609

chenych's avatar
chenych committed
1610
1611
1612
1613
1614
1615
                    audio_t_index = torch.arange(audio_lengths[num_audio_tokens])
                    video_t_index = (
                        torch.arange(video_grid_thw[num_video_tokens][0])
                        .view(-1, 1, 1)
                        .expand(
                            -1,
chenych's avatar
chenych committed
1616
1617
                            video_grid_thw[num_video_tokens][1] // image_processor.merge_size,
                            video_grid_thw[num_video_tokens][2] // image_processor.merge_size,
chenych's avatar
chenych committed
1618
1619
1620
1621
1622
1623
1624
                        )
                        .flatten()
                        * mm_inputs["video_second_per_grid"][num_video_tokens]
                        * 25  # FIXME hardcode of position_id_per_seconds=25
                    ).long()
                    t_ntoken_per_chunk = 50  # FIXME hardcode: [25 * 2]
                    video_chunk_indices = processor.get_chunked_index(video_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1625
                    audio_chunk_indices = processor.get_chunked_index(audio_t_index, t_ntoken_per_chunk)
chenych's avatar
chenych committed
1626
                    placeholder_string = ""
chenych's avatar
chenych committed
1627
                    placeholder_string += "<|vision_bos|>" + "<|audio_bos|>"
chenych's avatar
chenych committed
1628
1629
1630
1631
1632
                    for j in range(max(len(video_chunk_indices), len(audio_chunk_indices))):
                        video_chunk_index = video_chunk_indices[j] if j < len(video_chunk_indices) else None
                        audio_chunk_index = audio_chunk_indices[j] if j < len(audio_chunk_indices) else None
                        if video_chunk_index is not None:
                            placeholder_string += self.video_token * (video_chunk_index[1] - video_chunk_index[0])
chenych's avatar
chenych committed
1633

chenych's avatar
chenych committed
1634
1635
1636
                        if audio_chunk_index is not None:
                            placeholder_string += self.audio_token * (audio_chunk_index[1] - audio_chunk_index[0])

chenych's avatar
chenych committed
1637
                    placeholder_string += "<|audio_eos|>" + "<|vision_eos|>"
chenych's avatar
chenych committed
1638
1639
1640
1641
                    content = content.replace(VIDEO_PLACEHOLDER, placeholder_string, 1)
                    content = content.replace(AUDIO_PLACEHOLDER, "", 1)
                    num_audio_tokens += 1
                    num_video_tokens += 1
chenych's avatar
chenych committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
            else:
                while AUDIO_PLACEHOLDER in content:
                    audio_seqlen = audio_lengths[num_audio_tokens] if self.expand_mm_tokens else 1
                    content = content.replace(
                        AUDIO_PLACEHOLDER, f"<|audio_bos|>{self.audio_token * audio_seqlen}<|audio_eos|>", 1
                    )
                    num_audio_tokens += 1

                while VIDEO_PLACEHOLDER in content:
                    video_seqlen = (
                        video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
                    )
                    content = content.replace(
                        VIDEO_PLACEHOLDER, f"<|vision_bos|>{self.video_token * video_seqlen}<|vision_eos|>", 1
                    )
                    num_video_tokens += 1
chenych's avatar
chenych committed
1658
1659
1660

            message["content"] = content

luopl's avatar
luopl committed
1661
1662
        return messages

chenych's avatar
chenych committed
1663
1664
1665

@dataclass
class VideoLlavaPlugin(BasePlugin):
luopl's avatar
luopl committed
1666
    @override
chenych's avatar
chenych committed
1667
    def process_messages(
luopl's avatar
luopl committed
1668
        self,
chenych's avatar
chenych committed
1669
1670
1671
1672
1673
1674
        messages: list[dict[str, str]],
        images: list["ImageInput"],
        videos: list["VideoInput"],
        audios: list["AudioInput"],
        processor: Optional["MMProcessor"],
    ) -> list[dict[str, str]]:
chenych's avatar
chenych committed
1675
        self._validate_input(processor, images, videos, audios)
chenych's avatar
chenych committed
1676
        self._validate_messages(messages, images, videos, audios)
chenych's avatar
chenych committed
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
        num_image_tokens, num_video_tokens = 0, 0
        messages = deepcopy(messages)
        num_frames = 0
        if self.expand_mm_tokens:
            mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
            if "pixel_values_images" in mm_inputs:
                height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values_images"][0]))
                num_frames = 1

            if "pixel_values_videos" in mm_inputs:
                one_video = to_numpy_array(mm_inputs["pixel_values_videos"][0])
                height, width = get_image_size(one_video[0])
                num_frames = one_video.shape[0]  # frame dim is always after batch dim

            if "pixel_values_images" in mm_inputs or "pixel_values_videos" in mm_inputs:
                image_seqlen = (height // processor.patch_size) * (
                    width // processor.patch_size
                ) + processor.num_additional_image_tokens
                video_seqlen = image_seqlen * num_frames
                if processor.vision_feature_select_strategy == "default":
                    image_seqlen -= 1
        else:
            image_seqlen, video_seqlen = 1, 1

        for message in messages:
            content = message["content"]
            while IMAGE_PLACEHOLDER in content:
                content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
                num_image_tokens += 1

            while VIDEO_PLACEHOLDER in content:
                content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1)
                num_video_tokens += 1

            content = content.replace("{{image}}", self.image_token)
            message["content"] = content.replace("{{video}}", self.video_token)

        return messages
luopl's avatar
luopl committed
1715
1716
1717
1718


PLUGINS = {
    "base": BasePlugin,
chenych's avatar
chenych committed
1719
    "gemma3": Gemma3Plugin,
chenych's avatar
chenych committed
1720
    "intern_vl": InternVLPlugin,
chenych's avatar
chenych committed
1721
    "kimi_vl": KimiVLPlugin,
chenych's avatar
chenych committed
1722
    "llama4": Llama4Plugin,
luopl's avatar
luopl committed
1723
1724
1725
    "llava": LlavaPlugin,
    "llava_next": LlavaNextPlugin,
    "llava_next_video": LlavaNextVideoPlugin,
luopl's avatar
luopl committed
1726
1727
    "minicpm_v": MiniCPMVPlugin,
    "mllama": MllamaPlugin,
luopl's avatar
luopl committed
1728
    "paligemma": PaliGemmaPlugin,
luopl's avatar
luopl committed
1729
    "pixtral": PixtralPlugin,
chenych's avatar
chenych committed
1730
    "qwen2_audio": Qwen2AudioPlugin,
chenych's avatar
chenych committed
1731
    "qwen2_omni": Qwen2OmniPlugin,
chenych's avatar
chenych committed
1732
    "qwen2_vl": Qwen2VLPlugin,
luopl's avatar
luopl committed
1733
1734
1735
1736
    "video_llava": VideoLlavaPlugin,
}


chenych's avatar
chenych committed
1737
1738
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
    r"""Register a multimodal plugin."""
chenych's avatar
chenych committed
1739
1740
1741
1742
1743
1744
    if name in PLUGINS:
        raise ValueError(f"Multimodal plugin {name} already exists.")

    PLUGINS[name] = plugin_class


luopl's avatar
luopl committed
1745
1746
1747
1748
def get_mm_plugin(
    name: str,
    image_token: Optional[str] = None,
    video_token: Optional[str] = None,
chenych's avatar
chenych committed
1749
    audio_token: Optional[str] = None,
luopl's avatar
luopl committed
1750
) -> "BasePlugin":
chenych's avatar
chenych committed
1751
    r"""Get plugin for multimodal inputs."""
chenych's avatar
chenych committed
1752
    if name not in PLUGINS:
luopl's avatar
luopl committed
1753
        raise ValueError(f"Multimodal plugin `{name}` not found.")
luopl's avatar
luopl committed
1754

chenych's avatar
chenych committed
1755
    return PLUGINS[name](image_token, video_token, audio_token)