wan_t2v.py 1.46 KB
Newer Older
xuwx1's avatar
xuwx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
Wan2.1 text-to-video generation example.
This example demonstrates how to use LightX2V with Wan2.1 model for T2V generation.
"""

from lightx2v import LightX2VPipeline

# Initialize pipeline for Wan2.1 T2V task
pipe = LightX2VPipeline(
    model_path="/path/to/Wan2.1-T2V-14B",
    model_cls="wan2.1",
    task="t2v",
)

# Alternative: create generator from config JSON file
# pipe.create_generator(config_json="../configs/wan/wan_t2v.json")

# Create generator with specified parameters
pipe.create_generator(
    attn_mode="sage_attn2",
    infer_steps=50,
    height=480,  # Can be set to 720 for higher resolution
    width=832,  # Can be set to 1280 for higher resolution
    num_frames=81,
    guidance_scale=5.0,
    sample_shift=5.0,
)

seed = 42
prompt = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
negative_prompt = "镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
save_result_path = "/path/to/save_results/output.mp4"

pipe.generate(
    seed=seed,
    prompt=prompt,
    negative_prompt=negative_prompt,
    save_result_path=save_result_path,
)