""" Wan2.1 text-to-video generation example. This example demonstrates how to use LightX2V with Wan2.1 model for T2V generation. """ from lightx2v import LightX2VPipeline # Initialize pipeline for Wan2.1 T2V task pipe = LightX2VPipeline( model_path="/path/to/Wan2.1-T2V-14B", model_cls="wan2.1", task="t2v", ) # Alternative: create generator from config JSON file # pipe.create_generator(config_json="../configs/wan/wan_t2v.json") # Create generator with specified parameters pipe.create_generator( attn_mode="sage_attn2", infer_steps=50, height=480, # Can be set to 720 for higher resolution width=832, # Can be set to 1280 for higher resolution num_frames=81, guidance_scale=5.0, sample_shift=5.0, ) seed = 42 prompt = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." negative_prompt = "镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" save_result_path = "/path/to/save_results/output.mp4" pipe.generate( seed=seed, prompt=prompt, negative_prompt=negative_prompt, save_result_path=save_result_path, )