testbed.h 12.5 KB
Newer Older
zhoux's avatar
zhoux committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/***************************************************************************************************
 * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved.
 * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/*! \file
    \brief Unit tests for thread-level GEMM
*/

#pragma once

#include "hip/hip_runtime.h"
#include <iostream>
#include <fstream>
#include <sstream>

#include "hytlass/hytlass.h"
#include "hytlass/aligned_buffer.h"
#include "hytlass/numeric_types.h"
#include "hytlass/subbyte_reference.h"
#include "hytlass/platform/platform.h"
#include "hytlass/arch/arch.h"

#include "hytlass/util/host_tensor.h"
#include "hytlass/util/tensor_view_io.h"

#include "hytlass/util/distribution.h"
#include "hytlass/util/reference/host/gemm.h"
#include "hytlass/util/reference/host/gemm_complex.h"
#include "hytlass/util/reference/host/tensor_compare.h"
#include "hytlass/util/reference/host/tensor_copy.h"
#include "hytlass/util/reference/host/tensor_fill.h"
#include "hytlass/util/host_reorder.h"
#include "hytlass/util/host_uncompress.h"

namespace test {
namespace gemm {
namespace warp {

/////////////////////////////////////////////////////////////////////////////////////////////////

/// Test kernel
template <typename Mma, typename ThreadblockShape>
__global__ void kernel(
  typename Mma::ElementC *output_C, 
  typename Mma::ElementA const *input_A,
  typename Mma::ElementB const *input_B,
  typename Mma::ElementC const *input_C,
  int iterations = 1) {

  // Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers.
  __shared__ hytlass::AlignedBuffer<
    typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A;

  __shared__ hytlass::AlignedBuffer<
    typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B;

  if (threadIdx.x == 0) {
    typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data();
    #pragma unroll 1
    for (size_t i = 0; i < smem_buffer_A.size(); ++i) {
      hytlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) =
          hytlass::ReferenceFactory<typename hytlass::platform::remove_const<
              typename Mma::ElementA>::type>::get(input_A, i);
    }

    typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data();
    #pragma unroll 1
    for (size_t i = 0; i < smem_buffer_B.size(); ++i) {
      hytlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) =
          hytlass::ReferenceFactory<typename hytlass::platform::remove_const<
              typename Mma::ElementB>::type>::get(input_B, i);
    }
  }

  __syncthreads();
  __threadfence();

  //
  // Construct warp-level matrix product
  //

  using FragmentA = typename Mma::FragmentA;
  using FragmentB = typename Mma::FragmentB;
  using FragmentC = typename Mma::FragmentC;

  typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK});
  typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN});
  typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN});

  typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, hytlass::arch::LaneId());

  typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, hytlass::arch::LaneId());

  FragmentA frag_A;
  FragmentB frag_B;

  FragmentC accum;

  Mma mma;

  accum.clear();

  HYTLASS_PRAGMA_NO_UNROLL
  for (int iter = 0; iter < iterations; ++iter) {     // place in loop that is not unrolled 

    HYTLASS_PRAGMA_UNROLL
    for (int k = 0; k < ThreadblockShape::kK;
         k += Mma::Policy::MmaShape::kK) {
      iter_A.load(frag_A);
      iter_B.load(frag_B);

      ++iter_A;
      ++iter_B;

      mma(accum, frag_A, frag_B, accum);
    }
  }
  
  typename Mma::IteratorC iter_C({output_C, layout_C}, hytlass::arch::LaneId());

  iter_C.store(accum);
}

/////////////////////////////////////////////////////////////////////////////////////////////////

/// Structure to compute the matrix product
template <
  /// Warp-level matrix multiply-accumulate
  typename Mma_,
  /// Size of threadblock-scoped shape used to store SMEM
  typename ThreadblockShape_,
  /// The inner product operation performed by GEMM 
  typename Operator_ = hytlass::arch::OpMultiplyAdd
>
struct Testbed {

  /// Thread-level matrix multiply-accumulate operator
  using Mma = Mma_;
  using ThreadblockShape = ThreadblockShape_;
  using Operator = Operator_;

  using Shape = typename Mma::Shape;
  using ElementA = typename Mma::ElementA;
  using LayoutA = typename Mma::LayoutA;
  using ElementB = typename Mma::ElementB;
  using LayoutB = typename Mma::LayoutB;
  using ElementC = typename Mma::ElementC;
  using LayoutC = typename Mma::LayoutC;

  //
  // Data members
  //

  hytlass::HostTensor<ElementA, LayoutA> tensor_A;
  hytlass::HostTensor<ElementB, LayoutB> tensor_B;
  hytlass::HostTensor<ElementC, LayoutC> tensor_C;
  hytlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
  hytlass::HostTensor<ElementC, LayoutC> tensor_D_reference;

  //
  // Methods
  //

  /// Allocates workspace in device memory
  Testbed() {

    tensor_A.reset(hytlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK));
    tensor_B.reset(hytlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN));
    tensor_C.reset(hytlass::make_Coord(Shape::kM, Shape::kN));
    tensor_D_computed.reset(hytlass::make_Coord(Shape::kM, Shape::kN));
    tensor_D_reference.reset(hytlass::make_Coord(Shape::kM, Shape::kN), false);
  }

  /// Returns true if the HIP device is sufficient to execute the kernel.
  bool sufficient() const {

    hipDeviceProp_t properties;
    int device_idx;
    hipError_t result = hipGetDevice(&device_idx);

    if (result != hipSuccess) {
      throw std::runtime_error("hipGetDevice() API call failed.");
    }

    result = hipGetDeviceProperties(&properties, device_idx);

    if (result != hipSuccess) {
      throw std::runtime_error("hipGetDeviceProperties() failed");
    }

    return true;
  }


  /// Runs the test
  bool run(
      hytlass::Distribution::Kind init_A = hytlass::Distribution::Uniform,
      hytlass::Distribution::Kind init_B = hytlass::Distribution::Uniform) {

    if (!sufficient()) {
      return true;
    }

    //
    // initialize device memory
    //

    if (init_A == hytlass::Distribution::Uniform) {
      int scope_max = 8;
      int scope_min = -8;

      if (hytlass::sizeof_bits<ElementA>::value == 4) {
        scope_max = 2;
        scope_min = -2;
      } else if (hytlass::sizeof_bits<ElementA>::value == 1) {
        scope_max = 2;
        scope_min = 0;
      }

      uint64_t seed = 7;

      hytlass::reference::host::BlockFillRandomUniform(tensor_A.host_data(),
        tensor_A.capacity(), seed, scope_max, scope_min, 0);

    } else if (init_A == hytlass::Distribution::Sequential) {
      hytlass::reference::host::BlockFillSequential(tensor_A.host_data(),
                                                    tensor_A.capacity());
    } else if (init_A == hytlass::Distribution::Identity) {
      hytlass::reference::host::TensorFillIdentity(tensor_A.host_view());
    } else {
      return false;
    }

    if (init_B == hytlass::Distribution::Uniform) {
      int scope_max = 8;
      int scope_min = -8;

      if (hytlass::sizeof_bits<ElementB>::value == 4) {
        scope_max = 2;
        scope_min = -2;
      } else if (hytlass::sizeof_bits<ElementB>::value == 1) {
        scope_max = 2;
        scope_min = 0;
      }

      uint64_t seed = 7;

      hytlass::reference::host::BlockFillRandomUniform(tensor_B.host_data(),
        tensor_B.capacity(), seed, scope_max, scope_min, 0);

    } else if (init_B == hytlass::Distribution::Sequential) {
      hytlass::reference::host::BlockFillSequential(tensor_B.host_data(),
                                                    tensor_B.capacity());
    } else if (init_B == hytlass::Distribution::Identity) {
      hytlass::reference::host::TensorFillIdentity(tensor_B.host_view());
    } else {
      return false;
    }

    hytlass::reference::host::TensorFill(
      tensor_C.host_view(),
      ElementC(0)
    );

    hytlass::reference::host::TensorFill(
      tensor_D_computed.host_view(),
      ElementC(0)
    );

    hytlass::reference::host::TensorFill(
      tensor_D_reference.host_view(),
      ElementC(0)
    );

    tensor_A.sync_device();
    tensor_B.sync_device();
    tensor_C.sync_device();
    tensor_D_computed.sync_device();

    // launch kernel
    kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(WARP_SIZE_GPU, 1, 1) >>>(
      tensor_D_computed.device_data(),
      tensor_A.device_data(),
      tensor_B.device_data(),
      tensor_C.device_data());

    // verify no errors
    hipError_t result = hipDeviceSynchronize();

    EXPECT_EQ(result, hipSuccess) << "HIP ERROR: " << hipGetErrorString(result);
    if (result != hipSuccess) {
      return false;
    }

    tensor_D_computed.sync_host();

    //
    // Reference implementation
    //

    hytlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
                                   ElementC, LayoutC, ElementC, ElementC,
                                   Operator>
        reference_gemm;

    reference_gemm(
      {Shape::kM, Shape::kN, ThreadblockShape::kK},
      ElementC(1),
      tensor_A.host_ref(),
      tensor_B.host_ref(),
      ElementC(0),
      tensor_D_reference.host_ref()
    );

    //
    // Verify equivalence
    //

    // compare
    bool passed = hytlass::reference::host::TensorEquals(
      tensor_D_computed.host_view(),
      tensor_D_reference.host_view()
    );

    EXPECT_TRUE(passed);

    if (!passed) {
      
      hytlass::TensorView<ElementA, hytlass::layout::ColumnMajor> tensor_A_physical(
        tensor_A.host_data(), 
        tensor_A.stride()[0], 
        tensor_A.extent());

      hytlass::TensorView<ElementB, hytlass::layout::RowMajor> tensor_B_physical(
        tensor_B.host_data(), 
        tensor_B.stride()[0], 
        tensor_B.extent());

      std::ofstream file("warp_testbed_errors.txt");

      file <<"hytlass::sizeof_bits<ElementA>::value = "<<hytlass::sizeof_bits<ElementA>::value<<"\n";
      file
        << "A:\n" << tensor_A.host_view() << "\n\n"
        << "A(physical - stride: " << tensor_A.stride()[0] 
        << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n";

      file <<"hytlass::sizeof_bits<ElementB>::value = "<<hytlass::sizeof_bits<ElementB>::value<<"\n";
      file
        << "B:\n" << tensor_B.host_view() << "\n\n"
        << "B(physical - stride: " << tensor_B.stride()[0] 
        << ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n";

      file
        << "C:\n" << tensor_C.host_view() << "\n\n"
        << "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
        << "Computed:\n" << tensor_D_computed.host_view() << std::endl;
    }
    
    return passed;
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace warp
} // namespace gemm
} // namespace test