/*************************************************************************************************** * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved. * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #pragma once #include "hip/hip_runtime.h" #include #include #include #include "hytlass/hytlass.h" #include "hytlass/aligned_buffer.h" #include "hytlass/numeric_types.h" #include "hytlass/subbyte_reference.h" #include "hytlass/platform/platform.h" #include "hytlass/arch/arch.h" #include "hytlass/util/host_tensor.h" #include "hytlass/util/tensor_view_io.h" #include "hytlass/util/distribution.h" #include "hytlass/util/reference/host/gemm.h" #include "hytlass/util/reference/host/gemm_complex.h" #include "hytlass/util/reference/host/tensor_compare.h" #include "hytlass/util/reference/host/tensor_copy.h" #include "hytlass/util/reference/host/tensor_fill.h" #include "hytlass/util/host_reorder.h" #include "hytlass/util/host_uncompress.h" namespace test { namespace gemm { namespace warp { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Test kernel template __global__ void kernel( typename Mma::ElementC *output_C, typename Mma::ElementA const *input_A, typename Mma::ElementB const *input_B, typename Mma::ElementC const *input_C, int iterations = 1) { // Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers. __shared__ hytlass::AlignedBuffer< typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A; __shared__ hytlass::AlignedBuffer< typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B; if (threadIdx.x == 0) { typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_A.size(); ++i) { hytlass::ReferenceFactory::get(smem_ptr_A, i) = hytlass::ReferenceFactory::type>::get(input_A, i); } typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_B.size(); ++i) { hytlass::ReferenceFactory::get(smem_ptr_B, i) = hytlass::ReferenceFactory::type>::get(input_B, i); } } __syncthreads(); __threadfence(); // // Construct warp-level matrix product // using FragmentA = typename Mma::FragmentA; using FragmentB = typename Mma::FragmentB; using FragmentC = typename Mma::FragmentC; typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK}); typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN}); typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN}); typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, hytlass::arch::LaneId()); typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, hytlass::arch::LaneId()); FragmentA frag_A; FragmentB frag_B; FragmentC accum; Mma mma; accum.clear(); HYTLASS_PRAGMA_NO_UNROLL for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled HYTLASS_PRAGMA_UNROLL for (int k = 0; k < ThreadblockShape::kK; k += Mma::Policy::MmaShape::kK) { iter_A.load(frag_A); iter_B.load(frag_B); ++iter_A; ++iter_B; mma(accum, frag_A, frag_B, accum); } } typename Mma::IteratorC iter_C({output_C, layout_C}, hytlass::arch::LaneId()); iter_C.store(accum); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_, /// The inner product operation performed by GEMM typename Operator_ = hytlass::arch::OpMultiplyAdd > struct Testbed { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Operator = Operator_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; // // Data members // hytlass::HostTensor tensor_A; hytlass::HostTensor tensor_B; hytlass::HostTensor tensor_C; hytlass::HostTensor tensor_D_computed; hytlass::HostTensor tensor_D_reference; // // Methods // /// Allocates workspace in device memory Testbed() { tensor_A.reset(hytlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(hytlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(hytlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(hytlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(hytlass::make_Coord(Shape::kM, Shape::kN), false); } /// Returns true if the HIP device is sufficient to execute the kernel. bool sufficient() const { hipDeviceProp_t properties; int device_idx; hipError_t result = hipGetDevice(&device_idx); if (result != hipSuccess) { throw std::runtime_error("hipGetDevice() API call failed."); } result = hipGetDeviceProperties(&properties, device_idx); if (result != hipSuccess) { throw std::runtime_error("hipGetDeviceProperties() failed"); } return true; } /// Runs the test bool run( hytlass::Distribution::Kind init_A = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_B = hytlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == hytlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (hytlass::sizeof_bits::value == 4) { scope_max = 2; scope_min = -2; } else if (hytlass::sizeof_bits::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; hytlass::reference::host::BlockFillRandomUniform(tensor_A.host_data(), tensor_A.capacity(), seed, scope_max, scope_min, 0); } else if (init_A == hytlass::Distribution::Sequential) { hytlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == hytlass::Distribution::Identity) { hytlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == hytlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (hytlass::sizeof_bits::value == 4) { scope_max = 2; scope_min = -2; } else if (hytlass::sizeof_bits::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; hytlass::reference::host::BlockFillRandomUniform(tensor_B.host_data(), tensor_B.capacity(), seed, scope_max, scope_min, 0); } else if (init_B == hytlass::Distribution::Sequential) { hytlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == hytlass::Distribution::Identity) { hytlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } hytlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); hytlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); hytlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel<<< dim3(1, 1), dim3(WARP_SIZE_GPU, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors hipError_t result = hipDeviceSynchronize(); EXPECT_EQ(result, hipSuccess) << "HIP ERROR: " << hipGetErrorString(result); if (result != hipSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // hytlass::reference::host::Gemm reference_gemm; reference_gemm( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = hytlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { hytlass::TensorView tensor_A_physical( tensor_A.host_data(), tensor_A.stride()[0], tensor_A.extent()); hytlass::TensorView tensor_B_physical( tensor_B.host_data(), tensor_B.stride()[0], tensor_B.extent()); std::ofstream file("warp_testbed_errors.txt"); file <<"hytlass::sizeof_bits::value = "<::value<<"\n"; file << "A:\n" << tensor_A.host_view() << "\n\n" << "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n"; file <<"hytlass::sizeof_bits::value = "<::value<<"\n"; file << "B:\n" << tensor_B.host_view() << "\n\n" << "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n"; file << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace test