moe_compute_kernel.cu 13 KB
Newer Older
1
2
#include "moe_cuda_kernel.h"

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
6
#include <cstdio>
#include <iostream>
#include <vector>

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
7
8
#include <cuda.h>
#include <cuda_runtime.h>
Rick Ho's avatar
Rick Ho committed
9
#include <cublas_v2.h>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
10
#include <c10/cuda/CUDAGuard.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
11

Rick Ho's avatar
Rick Ho committed
12
#include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
13

Rick Ho's avatar
Rick Ho committed
14
15
#include "cublas_wrapper.h"
#include "cuda_stream_manager.h"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
16

Rick Ho's avatar
Rick Ho committed
17
#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
18

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
19
20
template <typename scalar_t>
__global__
Rick Ho's avatar
Rick Ho committed
21
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride,
TiagoMAntunes's avatar
TiagoMAntunes committed
22
23
24
25
26
        const long* offset, const scalar_t** ptrs) { 
    size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
    if (idx < n) {
        ptrs[idx] = base + stride * offset[idx];
    }
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
27
28
}

29
30
template <typename scalar_t>
__global__
31
void batch_scatter_kernel(size_t wid, const long* pos, 
TiagoMAntunes's avatar
TiagoMAntunes committed
32
33
34
35
36
37
        const scalar_t* inbuf, scalar_t* oubuf) { 
    inbuf += wid * pos[blockIdx.x];
    oubuf += wid * blockIdx.x;
    for (int i = threadIdx.x; i < wid; i += blockDim.x) {
        oubuf[i] = inbuf[i];
    }
38
39
}

40
41

/*
TiagoMAntunes's avatar
TiagoMAntunes committed
42
    This function is to be called with one block per each column
43
44
45
46
*/
template <typename scalar_t>
__global__ 
void column_reduce(const scalar_t * matrix, scalar_t * result, 
TiagoMAntunes's avatar
TiagoMAntunes committed
47
    int m /* lines */, int n /* columns*/) {
48
49
    
    // https://stackoverflow.com/questions/27570552/templated-cuda-kernel-with-dynamic-shared-memory
50
    extern __shared__ unsigned char my_smem[];
51
52
    scalar_t *sdata = reinterpret_cast<scalar_t *>(my_smem);

53
54
    // normal tid
    int tid = threadIdx.x + threadIdx.y * blockDim.x;
55
    
56
57
58
59
60
    // transposed tid for shared memory
    int new_tid = threadIdx.y + threadIdx.x * blockDim.y;

    // true x value in the matrix
    int real_x = threadIdx.x + blockDim.x * blockIdx.x;
61
    
62
63
64
65
66
    int i = real_x + n * threadIdx.y;
    const int it = n*blockDim.y;
    int offset = it;
    float accumulator = 0;

67
    if (threadIdx.y < m && real_x < n) {
68
69
        // store all the values from this column in a warped way
        accumulator = matrix[i];
70
        while (i + offset < n*m) {
71
            accumulator += matrix[i + offset];
72
            offset += it;
73
        }
74
    }
75

76
77
    // save column reduction data in a transposed way
    sdata[new_tid] = accumulator;
78
    __syncthreads();
79

80
81
82
83
    for (size_t t= 16; t > 0; t>>=1) {
        if (tid < 32 * 32 - 16)
            sdata[tid] += sdata[tid + t];
        __syncthreads();
84
    }
85
86
87
88
    
    if (threadIdx.y == 0 && real_x < n) 
        result[real_x] = sdata[new_tid];
    
89
90
}

91

Rick Ho's avatar
Rick Ho committed
92
void moe_cuda_expert_count_impl(
Rick Ho's avatar
Rick Ho committed
93
        const int* d_gate,
TiagoMAntunes's avatar
TiagoMAntunes committed
94
95
96
        int* expert_count,
        int* d_pos,
        const size_t num_expert,
Rick Ho's avatar
Rick Ho committed
97
        const size_t batch_size) {
Rick Ho's avatar
Rick Ho committed
98
    int *gate = new int[batch_size];
TiagoMAntunes's avatar
TiagoMAntunes committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    int *expert_ptr = new int[num_expert];
    memset(expert_count, 0, sizeof(int) * num_expert);

    checkCudaErrors(cudaMemcpy(gate, d_gate, sizeof(int) * batch_size,
                cudaMemcpyDeviceToHost));

    for (int i = 0; i < batch_size; ++i) {
        ++expert_count[gate[i]];
    }
    expert_ptr[0] = 0;
    for (int i = 1; i < num_expert; ++i) {
        expert_ptr[i] = expert_ptr[i - 1] + expert_count[i - 1];
    }

    int *pos = new int[batch_size];

    for (int i = 0; i < batch_size; ++i) {
        pos[i] = expert_ptr[gate[i]]++;
    }
    for (int i = num_expert - 1; i > 0; --i) {
        expert_ptr[i] = expert_ptr[i - 1];
    }
    expert_ptr[0] = 0;
    checkCudaErrors(cudaMemcpy(d_pos, pos, sizeof(int) * batch_size,
                cudaMemcpyHostToDevice));
    delete [] gate;
    delete [] expert_ptr;
Rick Ho's avatar
Rick Ho committed
126
}
127

Rick Ho's avatar
Rick Ho committed
128
129
130
template <typename scalar_t>
void moe_cuda_local_scatter_impl(
        const scalar_t* input,
TiagoMAntunes's avatar
TiagoMAntunes committed
131
132
133
134
135
136
137
138
139
        const long* d_pos,
        scalar_t* input_buf,
        const long batch_size,
        const long in_feat, 
        CudaStreamManager* smgr) {
    batch_scatter_kernel<scalar_t>
        <<<batch_size, 256, 0, smgr->stream(0)>>>(in_feat, d_pos, input,
                input_buf); 
    smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
140
}
Rick Ho's avatar
Rick Ho committed
141

Rick Ho's avatar
Rick Ho committed
142
143
template <typename scalar_t>
__global__
144
void batch_gather_kernel(size_t wid, const long* pos, 
TiagoMAntunes's avatar
TiagoMAntunes committed
145
146
147
148
149
150
        const scalar_t* inbuf, scalar_t* oubuf) { 
    inbuf += wid * blockIdx.x;
    oubuf += wid * pos[blockIdx.x];
    for (int i = threadIdx.x; i < wid; i += blockDim.x) {
        oubuf[i] = inbuf[i];
    }
Rick Ho's avatar
Rick Ho committed
151
152
153
154
155
}

template <typename scalar_t>
void moe_cuda_local_gather_impl(
        const scalar_t* output_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
156
157
158
159
160
161
162
163
164
        const long* d_pos,
        scalar_t* output,
        const size_t batch_size,
        const size_t out_feat,
        CudaStreamManager* smgr) {
    batch_gather_kernel<scalar_t>
        <<<batch_size, 256, 0, smgr->stream(0)>>>(out_feat, d_pos, output_buf,
                output); 
    smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
165
}
Rick Ho's avatar
Rick Ho committed
166

Rick Ho's avatar
Rick Ho committed
167
168
169
170
template <typename scalar_t>
void moe_cuda_forward_impl(
        const scalar_t* input_buf,
        const scalar_t* weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
171
        const long* expert_count,
Rick Ho's avatar
Rick Ho committed
172
        scalar_t* output_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
173
        const bool has_bias,
Rick Ho's avatar
Rick Ho committed
174
175
        const size_t in_feat,
        const size_t out_feat,
176
        const size_t num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        CudaStreamManager* smgr) {
    scalar_t alpha = 1, beta = has_bias ? 1 : 0; 

    for (int i = 0, ptr = 0; i < num_expert; ++i) {
        if (expert_count[i] == 0) {
            continue;
        }
        // Use T(B) x T(A) = T(C) to produce row-major C
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_T,
                CUBLAS_OP_N,
                out_feat, expert_count[i], in_feat,
                &alpha,
                weight + i * in_feat * out_feat, in_feat,
                input_buf + ptr * in_feat, in_feat,
                &beta,
                output_buf + out_feat * ptr, out_feat
                ));

        ptr += expert_count[i];
    }
    smgr->sync(num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
200
201
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
202
template <typename scalar_t>
Rick Ho's avatar
Rick Ho committed
203
204
205
void moe_cuda_backward_impl(
        const scalar_t* grad_output_buf,
        const scalar_t* input_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
206
207
        const scalar_t* weight,
        const long* expert_count,
Rick Ho's avatar
Rick Ho committed
208
209
        scalar_t* grad_input_buf,
        scalar_t* grad_weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
210
211
        scalar_t* grad_bias,
        const bool has_bias,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
212
213
214
        const size_t batch_size,
        const size_t in_feat,
        const size_t out_feat,
215
        const size_t num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
216
        CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
217
    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
Jiezhong Qiu committed
218

219
220
    // bias
    dim3 block_threads(32, 32);
221
    dim3 grid_threads(out_feat / 32 + (out_feat % 32 ? 1 : 0), 1);
222
223
    

TiagoMAntunes's avatar
TiagoMAntunes committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    for (int i = 0, ptr = 0; i < num_expert; ++i) {
        if (expert_count[i] == 0) {
            cudaMemset(grad_weight + i * in_feat * out_feat, 0, 
                    sizeof(scalar_t) * in_feat * out_feat);
            cudaMemset(grad_bias + i * out_feat, 0, sizeof(scalar_t) * out_feat);
            continue;
        }
        // Use T(B) x T(A) = T(C) to produce row-major C

        // Backward input: g_i = w @ g_o
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_N,
                CUBLAS_OP_N,
                in_feat, expert_count[i], out_feat,
                &alpha,
                weight + i * in_feat * out_feat, in_feat,
                grad_output_buf + ptr * out_feat, out_feat,
                &beta,
                grad_input_buf + in_feat * ptr, in_feat
                ));

        // Backward weight: g_w = i @ g_o
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_N,
                CUBLAS_OP_T,
                in_feat, out_feat, expert_count[i],
                &alpha,
                input_buf + in_feat * ptr, in_feat,
                grad_output_buf + ptr * out_feat, out_feat,
                &beta,
                grad_weight + i * in_feat * out_feat, in_feat
                ));
        
        if (has_bias) {
            column_reduce
261
            <<<grid_threads, block_threads, sizeof(scalar_t)*1024, smgr->stream(0)>>>
TiagoMAntunes's avatar
TiagoMAntunes committed
262
263
264
265
266
267
268
269
270
271
272
            (
                grad_output_buf + ptr * out_feat,
                grad_bias + i * out_feat,
                expert_count[i],
                out_feat
            );
        }

        ptr += expert_count[i];
    }
    smgr->sync(num_expert);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
273
}
Rick Ho's avatar
Rick Ho committed
274
275


Rick Ho's avatar
Rick Ho committed
276
std::vector<torch::Tensor> moe_cuda_expert_count(
TiagoMAntunes's avatar
TiagoMAntunes committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        torch::Tensor gate, 
        size_t num_expert) {
    const auto batch_size = gate.size(0);

    auto ec_options = torch::TensorOptions().dtype(torch::kInt32);
    auto expert_count = torch::empty(num_expert, ec_options);

    auto pos_options = torch::TensorOptions()
        .device(gate.device())
        .dtype(torch::kInt32);
    auto pos = torch::empty(batch_size, pos_options);
    moe_cuda_expert_count_impl(
            gate.data_ptr<int>(),
            expert_count.data_ptr<int>(),
            pos.data_ptr<int>(),
            num_expert,
            batch_size);

    return {expert_count, pos};
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
296
297
}

Rick Ho's avatar
Rick Ho committed
298
299
std::vector<torch::Tensor> moe_cuda_local_scatter(
    torch::Tensor input,
TiagoMAntunes's avatar
TiagoMAntunes committed
300
301
302
    torch::Tensor pos) {
    auto smgr = getCudaStreamManager(input.device().index());
    const auto batch_size = pos.size(0);
Rick Ho's avatar
Rick Ho committed
303
304
    const auto in_feat = input.size(1);

TiagoMAntunes's avatar
TiagoMAntunes committed
305
306
307
308
    auto opt = torch::TensorOptions()
        .dtype(input.dtype())
        .device(input.device());
    auto input_buf = torch::empty({batch_size, in_feat}, opt);
Rick Ho's avatar
Rick Ho committed
309

Rick Ho's avatar
Rick Ho committed
310
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "moe_local_scatter_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
311
312
313
314
315
316
317
318
319
320
            ([&] {
        moe_cuda_local_scatter_impl<scalar_t>(
            input.data_ptr<scalar_t>(),
            pos.data_ptr<long>(),
            input_buf.data_ptr<scalar_t>(),
            batch_size,
            in_feat,
            smgr);
    }));
    return {input_buf,};
Rick Ho's avatar
Rick Ho committed
321
}
Jiezhong Qiu's avatar
Jiezhong Qiu committed
322

Rick Ho's avatar
Rick Ho committed
323
std::vector<torch::Tensor> moe_cuda_local_gather(
TiagoMAntunes's avatar
TiagoMAntunes committed
324
325
326
327
    torch::Tensor output_buf,
    torch::Tensor pos) {
    auto smgr = getCudaStreamManager(output_buf.device().index());
    const auto batch_size = pos.size(0);
Rick Ho's avatar
Rick Ho committed
328
329
    const auto out_feat = output_buf.size(1);

TiagoMAntunes's avatar
TiagoMAntunes committed
330
331
332
333
    auto opt = torch::TensorOptions()
        .dtype(output_buf.dtype())
        .device(output_buf.device());
    auto output = torch::empty({batch_size, out_feat}, opt);
Rick Ho's avatar
Rick Ho committed
334

Rick Ho's avatar
Rick Ho committed
335
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(output_buf.scalar_type(), "moe_local_gather_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
336
337
338
339
340
341
342
343
344
345
            ([&] {
        moe_cuda_local_gather_impl<scalar_t>(
            output_buf.data_ptr<scalar_t>(),
            pos.data_ptr<long>(),
            output.data_ptr<scalar_t>(),
            batch_size,
            out_feat,
            smgr);
    }));
    return {output,};
Jiezhong Qiu's avatar
Jiezhong Qiu committed
346
}
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
347

Jiezhong Qiu's avatar
Jiezhong Qiu committed
348
std::vector<torch::Tensor> moe_cuda_forward(
Rick Ho's avatar
Rick Ho committed
349
        torch::Tensor input_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
350
        torch::Tensor expert_count,
351
        torch::Tensor weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
352
353
354
355
        at::optional<torch::Tensor> bias
        ) {
    auto smgr = getCudaStreamManager(input_buf.device().index());
    const auto batch_size = input_buf.size(0);
Rick Ho's avatar
Rick Ho committed
356
357
358
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
359
            
Rick Ho's avatar
Rick Ho committed
360
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
361
    printf("[forward] expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld\n", 
TiagoMAntunes's avatar
TiagoMAntunes committed
362
            num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
363
#endif
364
365

    torch::Tensor output;
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
366
    
TiagoMAntunes's avatar
TiagoMAntunes committed
367
368
369
370
371
372
373
374
375
    if (bias.has_value()) {
        output = bias.value().repeat_interleave(expert_count.to(bias.value().device()), 0);
    } else{
        auto out_options = torch::TensorOptions()
            .device(input_buf.device())
            .dtype(input_buf.dtype());
        output = torch::empty({batch_size, out_feat}, out_options);
    }
        
Rick Ho's avatar
Rick Ho committed
376
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input_buf.scalar_type(), "moe_forward_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
377
378
379
380
381
382
383
384
385
386
387
388
            ([&] {
        moe_cuda_forward_impl<scalar_t>(
            input_buf.data_ptr<scalar_t>(),
            weight.data_ptr<scalar_t>(),
            expert_count.data_ptr<long>(),
            output.data_ptr<scalar_t>(),
            bias.has_value(),
            in_feat,
            out_feat,
            num_expert,
            smgr
        );
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
389
390
391
392
393
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
394
std::vector<torch::Tensor> moe_cuda_backward(
395
396
    torch::Tensor grad_output_buf, 	// [batch_size x out_feat]
    torch::Tensor input_buf, 		// [batch_size x out_feat]
TiagoMAntunes's avatar
TiagoMAntunes committed
397
    torch::Tensor expert_count,
398
    torch::Tensor weight, 			// [num_expert x out_feat x in_feat]
TiagoMAntunes's avatar
TiagoMAntunes committed
399
    at::optional<torch::Tensor> bias
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
400
) {
TiagoMAntunes's avatar
TiagoMAntunes committed
401
    auto smgr = getCudaStreamManager(input_buf.device().index());
Rick Ho's avatar
Rick Ho committed
402
    const auto batch_size = input_buf.size(0);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
403
404
405
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
406

Rick Ho's avatar
Rick Ho committed
407
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
408
    printf("[backward] b=%ld, expert=%ld, in_feat (d_model)=%ld, "
TiagoMAntunes's avatar
TiagoMAntunes committed
409
410
            "out_feat (d_ffn)=%ld\n",
            batch_size, num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
411
#endif
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
412

Rick Ho's avatar
Rick Ho committed
413
414
    auto grad_input_buf = grad_output_buf.new_empty({batch_size, in_feat}); 
    auto grad_weight = grad_output_buf.new_empty({num_expert, out_feat, in_feat});
TiagoMAntunes's avatar
TiagoMAntunes committed
415
    auto grad_bias = grad_output_buf.new_empty({num_expert, out_feat});
Jiezhong Qiu's avatar
Jiezhong Qiu committed
416

Rick Ho's avatar
Rick Ho committed
417
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input_buf.scalar_type(), "moe_cuda_backward", ([&] {
Rick Ho's avatar
Rick Ho committed
418
419
420
        moe_cuda_backward_impl<scalar_t>(
            grad_output_buf.data_ptr<scalar_t>(),
            input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
421
            weight.data_ptr<scalar_t>(),
TiagoMAntunes's avatar
TiagoMAntunes committed
422
            expert_count.data_ptr<long>(),
Rick Ho's avatar
Rick Ho committed
423
            grad_input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
424
            grad_weight.data_ptr<scalar_t>(),
TiagoMAntunes's avatar
TiagoMAntunes committed
425
426
            grad_bias.data_ptr<scalar_t>(),
            bias.has_value(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
427
428
            batch_size,
            in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
429
            out_feat,
430
            num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
431
            smgr
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
432
433
434
        );
    }));

TiagoMAntunes's avatar
TiagoMAntunes committed
435
    return {grad_input_buf, grad_weight, grad_bias};
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
436
}