moe_compute_kernel.cu 13 KB
Newer Older
1
2
#include "moe_cuda_kernel.h"

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
6
#include <cstdio>
#include <iostream>
#include <vector>

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
7
8
#include <cuda.h>
#include <cuda_runtime.h>
Rick Ho's avatar
Rick Ho committed
9
#include <cublas_v2.h>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
10
#include <c10/cuda/CUDAGuard.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
11

Rick Ho's avatar
Rick Ho committed
12
#include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
13

Rick Ho's avatar
Rick Ho committed
14
15
#include "cublas_wrapper.h"
#include "cuda_stream_manager.h"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
16

Rick Ho's avatar
Rick Ho committed
17
#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
18

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
19
20
template <typename scalar_t>
__global__
Rick Ho's avatar
Rick Ho committed
21
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride,
TiagoMAntunes's avatar
TiagoMAntunes committed
22
23
24
25
26
        const long* offset, const scalar_t** ptrs) { 
    size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
    if (idx < n) {
        ptrs[idx] = base + stride * offset[idx];
    }
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
27
28
}

29
30
template <typename scalar_t>
__global__
31
void batch_scatter_kernel(size_t wid, const long* pos, 
TiagoMAntunes's avatar
TiagoMAntunes committed
32
33
34
35
36
37
        const scalar_t* inbuf, scalar_t* oubuf) { 
    inbuf += wid * pos[blockIdx.x];
    oubuf += wid * blockIdx.x;
    for (int i = threadIdx.x; i < wid; i += blockDim.x) {
        oubuf[i] = inbuf[i];
    }
38
39
}

40
41

/*
TiagoMAntunes's avatar
TiagoMAntunes committed
42
    This function is to be called with one block per each column
43
44
45
46
*/
template <typename scalar_t>
__global__ 
void column_reduce(const scalar_t * matrix, scalar_t * result, 
TiagoMAntunes's avatar
TiagoMAntunes committed
47
    int m /* lines */, int n /* columns*/) {
48
49
50
51
52
    
    // https://stackoverflow.com/questions/27570552/templated-cuda-kernel-with-dynamic-shared-memory
    extern __shared__ __align__(sizeof(scalar_t)) unsigned char my_smem[];
    scalar_t *sdata = reinterpret_cast<scalar_t *>(my_smem);

53
54
55
56
57
58
59
    unsigned int tid = threadIdx.x + threadIdx.y * blockDim.x;
    unsigned int real_x = threadIdx.x + blockDim.x * blockIdx.x;
    unsigned int real_y = n * threadIdx.y;
    
    unsigned int i = real_x + real_y;
    unsigned int it = n*blockDim.y;
    unsigned int offset = it;
60
    
61
    sdata[tid] = 0;
62
63
64
65
    if (threadIdx.y < m && real_x < n) {
        // can load memory
        // printf("tid=%d loading %d\n", tid, i);
        sdata[tid] = matrix[i];
66
        while (i + offset < n*m) {
67
            // printf("tid=%d loading %d\n", tid, i+offset);
68
            sdata[tid] += matrix[i + offset];
69
            offset += it;
70
        }
71
    }
72

73
74
75
76
77
78
    __syncthreads();
    
    for (unsigned int s = blockDim.y / 2; s > 0; s>>=1) {
        if (threadIdx.y < s) {
            // printf("tid=%d adding %d\n", tid, tid + blockDim.x *s);
            sdata[tid] += sdata[tid + blockDim.x * s];
79
        }
80
81
        __syncthreads();
    }
82

83
84
    if (threadIdx.y == 0 && real_x < n) {
        result[real_x] = sdata[tid];
85
    }
86

87
88
}

Rick Ho's avatar
Rick Ho committed
89
void moe_cuda_expert_count_impl(
Rick Ho's avatar
Rick Ho committed
90
        const int* d_gate,
TiagoMAntunes's avatar
TiagoMAntunes committed
91
92
93
        int* expert_count,
        int* d_pos,
        const size_t num_expert,
Rick Ho's avatar
Rick Ho committed
94
        const size_t batch_size) {
Rick Ho's avatar
Rick Ho committed
95
    int *gate = new int[batch_size];
TiagoMAntunes's avatar
TiagoMAntunes committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    int *expert_ptr = new int[num_expert];
    memset(expert_count, 0, sizeof(int) * num_expert);

    checkCudaErrors(cudaMemcpy(gate, d_gate, sizeof(int) * batch_size,
                cudaMemcpyDeviceToHost));

    for (int i = 0; i < batch_size; ++i) {
        ++expert_count[gate[i]];
    }
    expert_ptr[0] = 0;
    for (int i = 1; i < num_expert; ++i) {
        expert_ptr[i] = expert_ptr[i - 1] + expert_count[i - 1];
    }

    int *pos = new int[batch_size];

    for (int i = 0; i < batch_size; ++i) {
        pos[i] = expert_ptr[gate[i]]++;
    }
    for (int i = num_expert - 1; i > 0; --i) {
        expert_ptr[i] = expert_ptr[i - 1];
    }
    expert_ptr[0] = 0;
    checkCudaErrors(cudaMemcpy(d_pos, pos, sizeof(int) * batch_size,
                cudaMemcpyHostToDevice));
    delete [] gate;
    delete [] expert_ptr;
Rick Ho's avatar
Rick Ho committed
123
}
124

Rick Ho's avatar
Rick Ho committed
125
126
127
template <typename scalar_t>
void moe_cuda_local_scatter_impl(
        const scalar_t* input,
TiagoMAntunes's avatar
TiagoMAntunes committed
128
129
130
131
132
133
134
135
136
        const long* d_pos,
        scalar_t* input_buf,
        const long batch_size,
        const long in_feat, 
        CudaStreamManager* smgr) {
    batch_scatter_kernel<scalar_t>
        <<<batch_size, 256, 0, smgr->stream(0)>>>(in_feat, d_pos, input,
                input_buf); 
    smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
137
}
Rick Ho's avatar
Rick Ho committed
138

Rick Ho's avatar
Rick Ho committed
139
140
template <typename scalar_t>
__global__
141
void batch_gather_kernel(size_t wid, const long* pos, 
TiagoMAntunes's avatar
TiagoMAntunes committed
142
143
144
145
146
147
        const scalar_t* inbuf, scalar_t* oubuf) { 
    inbuf += wid * blockIdx.x;
    oubuf += wid * pos[blockIdx.x];
    for (int i = threadIdx.x; i < wid; i += blockDim.x) {
        oubuf[i] = inbuf[i];
    }
Rick Ho's avatar
Rick Ho committed
148
149
150
151
152
}

template <typename scalar_t>
void moe_cuda_local_gather_impl(
        const scalar_t* output_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
153
154
155
156
157
158
159
160
161
        const long* d_pos,
        scalar_t* output,
        const size_t batch_size,
        const size_t out_feat,
        CudaStreamManager* smgr) {
    batch_gather_kernel<scalar_t>
        <<<batch_size, 256, 0, smgr->stream(0)>>>(out_feat, d_pos, output_buf,
                output); 
    smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
162
}
Rick Ho's avatar
Rick Ho committed
163

Rick Ho's avatar
Rick Ho committed
164
165
166
167
template <typename scalar_t>
void moe_cuda_forward_impl(
        const scalar_t* input_buf,
        const scalar_t* weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
168
        const long* expert_count,
Rick Ho's avatar
Rick Ho committed
169
        scalar_t* output_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
170
        const bool has_bias,
Rick Ho's avatar
Rick Ho committed
171
172
        const size_t in_feat,
        const size_t out_feat,
173
        const size_t num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        CudaStreamManager* smgr) {
    scalar_t alpha = 1, beta = has_bias ? 1 : 0; 

    for (int i = 0, ptr = 0; i < num_expert; ++i) {
        if (expert_count[i] == 0) {
            continue;
        }
        // Use T(B) x T(A) = T(C) to produce row-major C
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_T,
                CUBLAS_OP_N,
                out_feat, expert_count[i], in_feat,
                &alpha,
                weight + i * in_feat * out_feat, in_feat,
                input_buf + ptr * in_feat, in_feat,
                &beta,
                output_buf + out_feat * ptr, out_feat
                ));

        ptr += expert_count[i];
    }
    smgr->sync(num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
197
198
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
199
template <typename scalar_t>
Rick Ho's avatar
Rick Ho committed
200
201
202
void moe_cuda_backward_impl(
        const scalar_t* grad_output_buf,
        const scalar_t* input_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
203
204
        const scalar_t* weight,
        const long* expert_count,
Rick Ho's avatar
Rick Ho committed
205
206
        scalar_t* grad_input_buf,
        scalar_t* grad_weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
207
208
        scalar_t* grad_bias,
        const bool has_bias,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
209
210
211
        const size_t batch_size,
        const size_t in_feat,
        const size_t out_feat,
212
        const size_t num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
213
        CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
214
    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
Jiezhong Qiu committed
215

216
217
    // bias
    dim3 block_threads(32, 32);
218
    dim3 grid_threads(out_feat / 32 + (out_feat % 32 ? 1 : 0), 1);
219
220
    

TiagoMAntunes's avatar
TiagoMAntunes committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    for (int i = 0, ptr = 0; i < num_expert; ++i) {
        if (expert_count[i] == 0) {
            cudaMemset(grad_weight + i * in_feat * out_feat, 0, 
                    sizeof(scalar_t) * in_feat * out_feat);
            cudaMemset(grad_bias + i * out_feat, 0, sizeof(scalar_t) * out_feat);
            continue;
        }
        // Use T(B) x T(A) = T(C) to produce row-major C

        // Backward input: g_i = w @ g_o
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_N,
                CUBLAS_OP_N,
                in_feat, expert_count[i], out_feat,
                &alpha,
                weight + i * in_feat * out_feat, in_feat,
                grad_output_buf + ptr * out_feat, out_feat,
                &beta,
                grad_input_buf + in_feat * ptr, in_feat
                ));

        // Backward weight: g_w = i @ g_o
        checkCudaErrors(cublasXgemm(
                smgr->handle(i),
                CUBLAS_OP_N,
                CUBLAS_OP_T,
                in_feat, out_feat, expert_count[i],
                &alpha,
                input_buf + in_feat * ptr, in_feat,
                grad_output_buf + ptr * out_feat, out_feat,
                &beta,
                grad_weight + i * in_feat * out_feat, in_feat
                ));
        
        if (has_bias) {
            column_reduce
258
            <<<grid_threads, block_threads, sizeof(scalar_t)*1024, smgr->stream(0)>>>
TiagoMAntunes's avatar
TiagoMAntunes committed
259
260
261
262
263
264
265
266
267
268
269
            (
                grad_output_buf + ptr * out_feat,
                grad_bias + i * out_feat,
                expert_count[i],
                out_feat
            );
        }

        ptr += expert_count[i];
    }
    smgr->sync(num_expert);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
270
}
Rick Ho's avatar
Rick Ho committed
271
272


Rick Ho's avatar
Rick Ho committed
273
std::vector<torch::Tensor> moe_cuda_expert_count(
TiagoMAntunes's avatar
TiagoMAntunes committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        torch::Tensor gate, 
        size_t num_expert) {
    const auto batch_size = gate.size(0);

    auto ec_options = torch::TensorOptions().dtype(torch::kInt32);
    auto expert_count = torch::empty(num_expert, ec_options);

    auto pos_options = torch::TensorOptions()
        .device(gate.device())
        .dtype(torch::kInt32);
    auto pos = torch::empty(batch_size, pos_options);
    moe_cuda_expert_count_impl(
            gate.data_ptr<int>(),
            expert_count.data_ptr<int>(),
            pos.data_ptr<int>(),
            num_expert,
            batch_size);

    return {expert_count, pos};
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
293
294
}

Rick Ho's avatar
Rick Ho committed
295
296
std::vector<torch::Tensor> moe_cuda_local_scatter(
    torch::Tensor input,
TiagoMAntunes's avatar
TiagoMAntunes committed
297
298
299
    torch::Tensor pos) {
    auto smgr = getCudaStreamManager(input.device().index());
    const auto batch_size = pos.size(0);
Rick Ho's avatar
Rick Ho committed
300
301
    const auto in_feat = input.size(1);

TiagoMAntunes's avatar
TiagoMAntunes committed
302
303
304
305
    auto opt = torch::TensorOptions()
        .dtype(input.dtype())
        .device(input.device());
    auto input_buf = torch::empty({batch_size, in_feat}, opt);
Rick Ho's avatar
Rick Ho committed
306

Rick Ho's avatar
Rick Ho committed
307
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "moe_local_scatter_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
308
309
310
311
312
313
314
315
316
317
            ([&] {
        moe_cuda_local_scatter_impl<scalar_t>(
            input.data_ptr<scalar_t>(),
            pos.data_ptr<long>(),
            input_buf.data_ptr<scalar_t>(),
            batch_size,
            in_feat,
            smgr);
    }));
    return {input_buf,};
Rick Ho's avatar
Rick Ho committed
318
}
Jiezhong Qiu's avatar
Jiezhong Qiu committed
319

Rick Ho's avatar
Rick Ho committed
320
std::vector<torch::Tensor> moe_cuda_local_gather(
TiagoMAntunes's avatar
TiagoMAntunes committed
321
322
323
324
    torch::Tensor output_buf,
    torch::Tensor pos) {
    auto smgr = getCudaStreamManager(output_buf.device().index());
    const auto batch_size = pos.size(0);
Rick Ho's avatar
Rick Ho committed
325
326
    const auto out_feat = output_buf.size(1);

TiagoMAntunes's avatar
TiagoMAntunes committed
327
328
329
330
    auto opt = torch::TensorOptions()
        .dtype(output_buf.dtype())
        .device(output_buf.device());
    auto output = torch::empty({batch_size, out_feat}, opt);
Rick Ho's avatar
Rick Ho committed
331

Rick Ho's avatar
Rick Ho committed
332
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(output_buf.scalar_type(), "moe_local_gather_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
333
334
335
336
337
338
339
340
341
342
            ([&] {
        moe_cuda_local_gather_impl<scalar_t>(
            output_buf.data_ptr<scalar_t>(),
            pos.data_ptr<long>(),
            output.data_ptr<scalar_t>(),
            batch_size,
            out_feat,
            smgr);
    }));
    return {output,};
Jiezhong Qiu's avatar
Jiezhong Qiu committed
343
}
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
344

Jiezhong Qiu's avatar
Jiezhong Qiu committed
345
std::vector<torch::Tensor> moe_cuda_forward(
Rick Ho's avatar
Rick Ho committed
346
        torch::Tensor input_buf,
TiagoMAntunes's avatar
TiagoMAntunes committed
347
        torch::Tensor expert_count,
348
        torch::Tensor weight,
TiagoMAntunes's avatar
TiagoMAntunes committed
349
350
351
352
        at::optional<torch::Tensor> bias
        ) {
    auto smgr = getCudaStreamManager(input_buf.device().index());
    const auto batch_size = input_buf.size(0);
Rick Ho's avatar
Rick Ho committed
353
354
355
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
356
            
Rick Ho's avatar
Rick Ho committed
357
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
358
    printf("[forward] expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld\n", 
TiagoMAntunes's avatar
TiagoMAntunes committed
359
            num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
360
#endif
361
362

    torch::Tensor output;
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
363
    
TiagoMAntunes's avatar
TiagoMAntunes committed
364
365
366
367
368
369
370
371
372
    if (bias.has_value()) {
        output = bias.value().repeat_interleave(expert_count.to(bias.value().device()), 0);
    } else{
        auto out_options = torch::TensorOptions()
            .device(input_buf.device())
            .dtype(input_buf.dtype());
        output = torch::empty({batch_size, out_feat}, out_options);
    }
        
Rick Ho's avatar
Rick Ho committed
373
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input_buf.scalar_type(), "moe_forward_cuda", 
TiagoMAntunes's avatar
TiagoMAntunes committed
374
375
376
377
378
379
380
381
382
383
384
385
            ([&] {
        moe_cuda_forward_impl<scalar_t>(
            input_buf.data_ptr<scalar_t>(),
            weight.data_ptr<scalar_t>(),
            expert_count.data_ptr<long>(),
            output.data_ptr<scalar_t>(),
            bias.has_value(),
            in_feat,
            out_feat,
            num_expert,
            smgr
        );
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
386
387
388
389
390
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
391
std::vector<torch::Tensor> moe_cuda_backward(
392
393
    torch::Tensor grad_output_buf, 	// [batch_size x out_feat]
    torch::Tensor input_buf, 		// [batch_size x out_feat]
TiagoMAntunes's avatar
TiagoMAntunes committed
394
    torch::Tensor expert_count,
395
    torch::Tensor weight, 			// [num_expert x out_feat x in_feat]
TiagoMAntunes's avatar
TiagoMAntunes committed
396
    at::optional<torch::Tensor> bias
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
397
) {
TiagoMAntunes's avatar
TiagoMAntunes committed
398
    auto smgr = getCudaStreamManager(input_buf.device().index());
Rick Ho's avatar
Rick Ho committed
399
    const auto batch_size = input_buf.size(0);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
400
401
402
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
403

Rick Ho's avatar
Rick Ho committed
404
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
405
    printf("[backward] b=%ld, expert=%ld, in_feat (d_model)=%ld, "
TiagoMAntunes's avatar
TiagoMAntunes committed
406
407
            "out_feat (d_ffn)=%ld\n",
            batch_size, num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
408
#endif
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
409

Rick Ho's avatar
Rick Ho committed
410
411
    auto grad_input_buf = grad_output_buf.new_empty({batch_size, in_feat}); 
    auto grad_weight = grad_output_buf.new_empty({num_expert, out_feat, in_feat});
TiagoMAntunes's avatar
TiagoMAntunes committed
412
    auto grad_bias = grad_output_buf.new_empty({num_expert, out_feat});
Jiezhong Qiu's avatar
Jiezhong Qiu committed
413

Rick Ho's avatar
Rick Ho committed
414
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input_buf.scalar_type(), "moe_cuda_backward", ([&] {
Rick Ho's avatar
Rick Ho committed
415
416
417
        moe_cuda_backward_impl<scalar_t>(
            grad_output_buf.data_ptr<scalar_t>(),
            input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
418
            weight.data_ptr<scalar_t>(),
TiagoMAntunes's avatar
TiagoMAntunes committed
419
            expert_count.data_ptr<long>(),
Rick Ho's avatar
Rick Ho committed
420
            grad_input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
421
            grad_weight.data_ptr<scalar_t>(),
TiagoMAntunes's avatar
TiagoMAntunes committed
422
423
            grad_bias.data_ptr<scalar_t>(),
            bias.has_value(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
424
425
            batch_size,
            in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
426
            out_feat,
427
            num_expert,
TiagoMAntunes's avatar
TiagoMAntunes committed
428
            smgr
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
429
430
431
        );
    }));

TiagoMAntunes's avatar
TiagoMAntunes committed
432
    return {grad_input_buf, grad_weight, grad_bias};
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
433
}