layers.py 9.51 KB
Newer Older
Sengxian's avatar
Sengxian committed
1
r"""
Rick Ho's avatar
Rick Ho committed
2
FMoE core layer
Sengxian's avatar
Sengxian committed
3
"""
4
import tree
Rick Ho's avatar
Rick Ho committed
5
import os
Rick Ho's avatar
Rick Ho committed
6
import torch
Rick Ho's avatar
Rick Ho committed
7
8
import torch.nn as nn

9
from .functions import prepare_forward, ensure_comm
Rick Ho's avatar
Rick Ho committed
10
from .functions import MOEScatter, MOEGather
Sengxian's avatar
Sengxian committed
11
from .functions import AllGather, Slice
Rick Ho's avatar
Rick Ho committed
12
from .gates import NaiveGate
Rick Ho's avatar
Rick Ho committed
13

Rick Ho's avatar
Rick Ho committed
14

Rick Ho's avatar
Rick Ho committed
15
def mark_module_parallel_comm(module, comm):
Sengxian's avatar
Sengxian committed
16
    r"""
Rick Ho's avatar
Rick Ho committed
17
18
    Mark all parameters in `module` as doing data parallel in `comm`, where
    `comm` may be one of `'world', 'dp', 'none'`.
Sengxian's avatar
Sengxian committed
19
    """
Rick Ho's avatar
Rick Ho committed
20
    for p in module.parameters():
Sengxian's avatar
Sengxian committed
21
        setattr(p, "dp_comm", comm)
Rick Ho's avatar
Rick Ho committed
22
23


Rick Ho's avatar
Rick Ho committed
24
def _fmoe_general_global_forward(inp, gate, expert_fn, num_expert, world_size, **kwargs):
Sengxian's avatar
Sengxian committed
25
    r"""
Rick Ho's avatar
Rick Ho committed
26
27
28
29
30
    A private function that performs the following steps to complete the MoE
    computation.
    * Count the number of tokens from each worker to each expert.
    * Send the features to their target position so that input features to each
    expert are contiguous in memory.
Rick Ho's avatar
Rick Ho committed
31
    * Perform the forward computation of the experts using `expert_fn`
Rick Ho's avatar
Rick Ho committed
32
33
34
    * Gather the output features of experts back, and reorder them as sentences.
    Intermediate results like expert counts are hidden from users by this
    function.
Sengxian's avatar
Sengxian committed
35
    """
36
    (
Sengxian's avatar
Sengxian committed
37
38
39
40
41
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
        fwd_batch_size,
42
    ) = prepare_forward(gate, num_expert, world_size)
Rick Ho's avatar
Rick Ho committed
43
44
45
    topk = 1
    if len(gate.shape) == 2:
        topk = gate.shape[1]
46

47
48
49
    def scatter_func(tensor):
        return MOEScatter.apply(
            tensor,
Rick Ho's avatar
Rick Ho committed
50
            torch.div(pos, topk, rounding_mode='floor'),
51
52
53
54
55
56
57
58
            local_expert_count,
            global_expert_count,
            fwd_batch_size,
            world_size,
        )

    x = tree.map_structure(scatter_func, inp)

Rick Ho's avatar
Rick Ho committed
59
    x = expert_fn(x, fwd_expert_count)
60

61
    out_batch_size = tree.flatten(inp)[0].shape[0]
62
63
64
    if len(gate.shape) == 2:
        out_batch_size *= gate.shape[1]

65
66
67
    def gather_func(tensor):
        return MOEGather.apply(
            tensor,
68
69
70
71
72
73
74
            pos,
            local_expert_count,
            global_expert_count,
            out_batch_size,
            world_size,
        )

75
    outp = tree.map_structure(gather_func, x)
76
    return outp
Rick Ho's avatar
Rick Ho committed
77
78


Rick Ho's avatar
Rick Ho committed
79
80
81
82
if os.environ.get('FMOE_FASTER_SCHEDULE_ENABLE', '0') in ['1', 'ON']:
    from .fastermoe.schedule import _fmoe_general_global_forward


Rick Ho's avatar
Rick Ho committed
83
class FMoE(nn.Module):
Sengxian's avatar
Sengxian committed
84
    r"""
Rick Ho's avatar
Rick Ho committed
85
86
    A general moe implementation that supports an arbitrary module as the
    expert.
Rick Ho's avatar
Rick Ho committed
87
88
89
    * `num_expert` stands for the number of experts on **each** worker.
    * `world_size` stands for the total number of workers that contains
    different experts.
Rick Ho's avatar
Rick Ho committed
90
91
92
93
94
    * `slice_group` can be a torch's communication group, indicating that
    specific model parallel is applied across the group, and workers in the
    group hold the same copy of input feature, and requires the same copy of
    the output. For each worker, FMoE only computes the output of a certain
    slice of the input batch, and will all-gather the outputs after
Rick Ho's avatar
Rick Ho committed
95
    computation.
Rick Ho's avatar
Rick Ho committed
96
    * `top_k` stands for the number of experts each token is going to.
Rick Ho's avatar
Rick Ho committed
97
98
99
    * `gate` is a gate class which can found in `fmoe.gates`.
    * `expert` can be specified as a module class, it is used to generate
    `num_expert` expert modules.
Sengxian's avatar
Sengxian committed
100
101
102
103
104
105
106
    """

    def __init__(
        self,
        num_expert=32,
        d_model=1024,
        world_size=1,
107
        mp_group=None,  # being deprecated
Rick Ho's avatar
Rick Ho committed
108
        slice_group=None,
Rick Ho's avatar
Rick Ho committed
109
        moe_group=None,
Sengxian's avatar
Sengxian committed
110
111
112
        top_k=2,
        gate=NaiveGate,
        expert=None,
113
        gate_hook=None,
Colin's avatar
Colin committed
114
115
        mask=None,
        mask_dict=None,
Sengxian's avatar
Sengxian committed
116
    ):
Rick Ho's avatar
Rick Ho committed
117
        super().__init__()
Rick Ho's avatar
Rick Ho committed
118
119
120
        self.num_expert = num_expert
        self.d_model = d_model
        self.world_size = world_size
Rick Ho's avatar
Rick Ho committed
121
122
123

        self.slice_group = slice_group
        if mp_group is not None:
124
            print("[Warning] mp_group is being deprecated")
Rick Ho's avatar
Rick Ho committed
125
126
127
128
            self.slice_group = mp_group
        if self.slice_group is None:
            self.slice_size = 1
            self.slice_rank = 0
Rick Ho's avatar
Rick Ho committed
129
        else:
Rick Ho's avatar
Rick Ho committed
130
131
            self.slice_size = self.slice_group.size()
            self.slice_rank = self.slice_group.rank()
Rick Ho's avatar
Rick Ho committed
132

Rick Ho's avatar
Rick Ho committed
133
        self.top_k = top_k
Colin's avatar
Colin committed
134
135
136
137
138
        if type(expert) is list:
            self.experts = nn.ModuleList([e(d_model) for e in expert])
            self.experts_fused = False
            self.num_expert = num_expert = len(expert)
        elif expert is not None:
139
            self.experts = nn.ModuleList([expert(d_model) for _ in range(num_expert)])
140
141
142
            self.experts_fused = False
        else:
            self.experts_fused = True
Rick Ho's avatar
Rick Ho committed
143

Colin's avatar
Colin committed
144
        self.gate = gate(d_model, num_expert, world_size, top_k)
145
        self.gate_hook = gate_hook
Colin's avatar
Colin committed
146
147
        self.mask = mask
        self.mask_dict = mask_dict
Rick Ho's avatar
Rick Ho committed
148
        self.moe_group = moe_group
Rick Ho's avatar
Rick Ho committed
149
150

    def expert_fn(self, inp, fwd_expert_count):
Sengxian's avatar
Sengxian committed
151
        r"""
Rick Ho's avatar
Rick Ho committed
152
153
        The default expert function which either calls the experts as a whole
        or as separate experts.
Sengxian's avatar
Sengxian committed
154
        """
155
        if self.experts_fused:
Rick Ho's avatar
Rick Ho committed
156
            return self.experts(inp, fwd_expert_count)
Rick Ho's avatar
Rick Ho committed
157
158
        if isinstance(fwd_expert_count, torch.Tensor):
            fwd_expert_count = fwd_expert_count.cpu().numpy()
Rick Ho's avatar
Rick Ho committed
159
160
161
        outputs = []
        base_idx = 0
        for i in range(self.num_expert):
Rick Ho's avatar
Rick Ho committed
162
            batch_size = fwd_expert_count[i]
Sengxian's avatar
Sengxian committed
163
            inp_slice = inp[base_idx : base_idx + batch_size]
Rick Ho's avatar
Rick Ho committed
164
165
166
            outputs.append(self.experts[i](inp_slice))
            base_idx += batch_size
        return torch.cat(outputs, dim=0)
Rick Ho's avatar
Rick Ho committed
167

Sengxian's avatar
Sengxian committed
168
169
    def mark_parallel_comm(self, expert_dp_comm="none"):
        r"""
Rick Ho's avatar
Rick Ho committed
170
171
172
        Automatically mark the data parallel comms of the parameters within the
        module. This can be typically called at the end of the __init__ function
        in child classes.
Sengxian's avatar
Sengxian committed
173
        """
Rick Ho's avatar
Rick Ho committed
174
        if self.experts is not None:
175
            comm = expert_dp_comm
Rick Ho's avatar
Rick Ho committed
176
177
178
179
180
            if isinstance(self.experts, list):
                for e in self.experts:
                    mark_module_parallel_comm(e, comm)
            else:
                mark_module_parallel_comm(self.experts, comm)
Rick Ho's avatar
Rick Ho committed
181
        mark_module_parallel_comm(self.gate, "gate")
Rick Ho's avatar
Rick Ho committed
182

Jiezhong Qiu's avatar
Jiezhong Qiu committed
183
    def forward(self, moe_inp):
Sengxian's avatar
Sengxian committed
184
        r"""
Rick Ho's avatar
Rick Ho committed
185
186
187
        The FMoE module first computes gate output, and then conduct MoE forward
        according to the gate.  The score of the selected gate given by the
        expert is multiplied to the experts' output tensors as a weight.
Sengxian's avatar
Sengxian committed
188
        """
189
190
191
192
193
194
195
196

        moe_inp_batch_size = tree.flatten(
            tree.map_structure(lambda tensor: tensor.shape[0], moe_inp)
        )
        assert all(
            [batch_size == moe_inp_batch_size[0] for batch_size in moe_inp_batch_size]
        ), "MoE inputs must have the same batch size"

197
        if self.world_size > 1:
198
199
200
201
202

            def ensure_comm_func(tensor):
                ensure_comm(tensor, self.moe_group)

            tree.map_structure(ensure_comm_func, moe_inp)
Rick Ho's avatar
Rick Ho committed
203
        if self.slice_size > 1:
Sengxian's avatar
Sengxian committed
204

205
206
207
208
209
210
211
212
            def slice_func(tensor):
                return Slice.apply(
                    tensor, self.slice_rank, self.slice_size, self.slice_group
                )

            moe_inp = tree.map_structure(slice_func, moe_inp)

        gate_top_k_idx, gate_score = self.gate(moe_inp)
Rick Ho's avatar
Rick Ho committed
213

214
215
216
        if self.gate_hook is not None:
            self.gate_hook(gate_top_k_idx, gate_score, None)

Colin's avatar
Colin committed
217
        # delete masked tensors
Colin's avatar
Colin committed
218
        if self.mask is not None and self.mask_dict is not None:
219
220
221
222
223
224
            # TODO: to fix
            def delete_mask_func(tensor):
                # to: (BxL') x d_model
                tensor = tensor[mask == 0, :]
                return tensor

Colin's avatar
Colin committed
225
            mask = self.mask.view(-1)
226
            moe_inp = tree.map_structure(delete_mask_func, moe_inp)
Colin's avatar
Colin committed
227
228
229
            gate_top_k_idx = gate_top_k_idx[mask == 0, :]

        fwd = _fmoe_general_global_forward(
Rick Ho's avatar
Rick Ho committed
230
231
232
            moe_inp, gate_top_k_idx, self.expert_fn,
            self.num_expert, self.world_size,
            experts=self.experts
Sengxian's avatar
Sengxian committed
233
        )
234

Colin's avatar
Colin committed
235
        # recover deleted tensors
Colin's avatar
Colin committed
236
        if self.mask is not None and self.mask_dict is not None:
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

            def recover_func(tensor):
                # to: (BxL') x top_k x dim
                dim = tensor.shape[-1]
                tensor = tensor.view(-1, self.top_k, dim)
                # to: (BxL) x top_k x d_model
                x = torch.zeros(
                    mask.shape[0],
                    self.top_k,
                    dim,
                    device=tensor.device,
                    dtype=tensor.dtype,
                )
                # recover
                x[mask == 0] = tensor
                for k, v in self.mask_dict.items():
                    x[mask == k] = v
                return x

            moe_outp = tree.map_structure(recover_func, fwd)
Colin's avatar
Colin committed
257
258
        else:

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            def view_func(tensor):
                dim = tensor.shape[-1]
                tensor = tensor.view(-1, self.top_k, dim)
                return tensor

            moe_outp = tree.map_structure(view_func, fwd)

        gate_score = gate_score.view(-1, 1, self.top_k)

        def bmm_func(tensor):
            dim = tensor.shape[-1]
            tensor = torch.bmm(gate_score, tensor).reshape(-1, dim)
            return tensor

        moe_outp = tree.map_structure(bmm_func, moe_outp)
Sengxian's avatar
Sengxian committed
274

Rick Ho's avatar
Rick Ho committed
275
        if self.slice_size > 1:
276
277
278
279
280
281
282

            def all_gather_func(tensor):
                return AllGather.apply(
                    tensor, self.slice_rank, self.slice_size, self.slice_group
                )

            moe_outp = tree.map_structure(all_gather_func, moe_outp)
283
284
285
286
287
288
289

        moe_outp_batch_size = tree.flatten(
            tree.map_structure(lambda tensor: tensor.shape[0], moe_outp)
        )
        assert all(
            [batch_size == moe_outp_batch_size[0] for batch_size in moe_outp_batch_size]
        ), "MoE outputs must have the same batch size"
290
        return moe_outp