layers.py 8.66 KB
Newer Older
Sengxian's avatar
Sengxian committed
1
r"""
Rick Ho's avatar
Rick Ho committed
2
FMoE core layer
Sengxian's avatar
Sengxian committed
3
"""
4
import tree
Rick Ho's avatar
Rick Ho committed
5
import torch
Rick Ho's avatar
Rick Ho committed
6
7
import torch.nn as nn

8
from .functions import prepare_forward, ensure_comm
Rick Ho's avatar
Rick Ho committed
9
from .functions import MOEScatter, MOEGather
Sengxian's avatar
Sengxian committed
10
from .functions import AllGather, Slice
Rick Ho's avatar
Rick Ho committed
11
from .gates import NaiveGate
Rick Ho's avatar
Rick Ho committed
12

Rick Ho's avatar
Rick Ho committed
13

Rick Ho's avatar
Rick Ho committed
14
def mark_module_parallel_comm(module, comm):
Sengxian's avatar
Sengxian committed
15
    r"""
Rick Ho's avatar
Rick Ho committed
16
17
    Mark all parameters in `module` as doing data parallel in `comm`, where
    `comm` may be one of `'world', 'dp', 'none'`.
Sengxian's avatar
Sengxian committed
18
    """
Rick Ho's avatar
Rick Ho committed
19
    for p in module.parameters():
Sengxian's avatar
Sengxian committed
20
        setattr(p, "dp_comm", comm)
Rick Ho's avatar
Rick Ho committed
21
22


23
def _fmoe_general_global_forward(inp, gate, expert_fn, num_expert, world_size):
Sengxian's avatar
Sengxian committed
24
    r"""
Rick Ho's avatar
Rick Ho committed
25
26
27
28
29
    A private function that performs the following steps to complete the MoE
    computation.
    * Count the number of tokens from each worker to each expert.
    * Send the features to their target position so that input features to each
    expert are contiguous in memory.
Rick Ho's avatar
Rick Ho committed
30
    * Perform the forward computation of the experts using `expert_fn`
Rick Ho's avatar
Rick Ho committed
31
32
33
    * Gather the output features of experts back, and reorder them as sentences.
    Intermediate results like expert counts are hidden from users by this
    function.
Sengxian's avatar
Sengxian committed
34
    """
35
    (
Sengxian's avatar
Sengxian committed
36
37
38
39
40
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
        fwd_batch_size,
41
    ) = prepare_forward(gate, num_expert, world_size)
Rick Ho's avatar
Rick Ho committed
42
43
44
    topk = 1
    if len(gate.shape) == 2:
        topk = gate.shape[1]
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    def scatter_func(inp_tensor):
        tensor = MOEScatter.apply(
            inp_tensor,
            pos // topk,
            local_expert_count,
            global_expert_count,
            fwd_batch_size,
            world_size,
        )
        return tensor

    x = tree.map_structure(scatter_func, inp)

Rick Ho's avatar
Rick Ho committed
59
    x = expert_fn(x, fwd_expert_count)
60
61
62
63
64

    out_batch_size = inp.shape[0]
    if len(gate.shape) == 2:
        out_batch_size *= gate.shape[1]

65
66
67
68
69
70
71
72
73
74
75
76
77
    def gatter_func(outp_tensor):
        tensor = MOEGather.apply(
            outp_tensor,
            pos,
            local_expert_count,
            global_expert_count,
            out_batch_size,
            world_size,
        )
        return tensor

    outp = tree.map_structure(gatter_func, x)
    return outp
Rick Ho's avatar
Rick Ho committed
78
79


Rick Ho's avatar
Rick Ho committed
80
class FMoE(nn.Module):
Sengxian's avatar
Sengxian committed
81
    r"""
Rick Ho's avatar
Rick Ho committed
82
83
    A general moe implementation that supports an arbitrary module as the
    expert.
Rick Ho's avatar
Rick Ho committed
84
85
86
    * `num_expert` stands for the number of experts on **each** worker.
    * `world_size` stands for the total number of workers that contains
    different experts.
Rick Ho's avatar
Rick Ho committed
87
88
89
90
91
    * `slice_group` can be a torch's communication group, indicating that
    specific model parallel is applied across the group, and workers in the
    group hold the same copy of input feature, and requires the same copy of
    the output. For each worker, FMoE only computes the output of a certain
    slice of the input batch, and will all-gather the outputs after
Rick Ho's avatar
Rick Ho committed
92
    computation.
Rick Ho's avatar
Rick Ho committed
93
    * `top_k` stands for the number of experts each token is going to.
Rick Ho's avatar
Rick Ho committed
94
95
96
    * `gate` is a gate class which can found in `fmoe.gates`.
    * `expert` can be specified as a module class, it is used to generate
    `num_expert` expert modules.
Sengxian's avatar
Sengxian committed
97
98
99
100
101
102
103
    """

    def __init__(
        self,
        num_expert=32,
        d_model=1024,
        world_size=1,
104
        mp_group=None,  # being deprecated
Rick Ho's avatar
Rick Ho committed
105
        slice_group=None,
Rick Ho's avatar
Rick Ho committed
106
        moe_group=None,
Sengxian's avatar
Sengxian committed
107
108
109
        top_k=2,
        gate=NaiveGate,
        expert=None,
110
        gate_hook=None,
Colin's avatar
Colin committed
111
112
        mask=None,
        mask_dict=None,
Sengxian's avatar
Sengxian committed
113
    ):
Rick Ho's avatar
Rick Ho committed
114
        super().__init__()
Rick Ho's avatar
Rick Ho committed
115
116
117
        self.num_expert = num_expert
        self.d_model = d_model
        self.world_size = world_size
Rick Ho's avatar
Rick Ho committed
118
119
120

        self.slice_group = slice_group
        if mp_group is not None:
121
            print("[Warning] mp_group is being deprecated")
Rick Ho's avatar
Rick Ho committed
122
123
124
125
            self.slice_group = mp_group
        if self.slice_group is None:
            self.slice_size = 1
            self.slice_rank = 0
Rick Ho's avatar
Rick Ho committed
126
        else:
Rick Ho's avatar
Rick Ho committed
127
128
            self.slice_size = self.slice_group.size()
            self.slice_rank = self.slice_group.rank()
Rick Ho's avatar
Rick Ho committed
129

Rick Ho's avatar
Rick Ho committed
130
        self.top_k = top_k
Colin's avatar
Colin committed
131
132
133
134
135
        if type(expert) is list:
            self.experts = nn.ModuleList([e(d_model) for e in expert])
            self.experts_fused = False
            self.num_expert = num_expert = len(expert)
        elif expert is not None:
136
            self.experts = nn.ModuleList([expert(d_model) for _ in range(num_expert)])
137
138
139
            self.experts_fused = False
        else:
            self.experts_fused = True
Rick Ho's avatar
Rick Ho committed
140

Colin's avatar
Colin committed
141
        self.gate = gate(d_model, num_expert, world_size, top_k)
142
        self.gate_hook = gate_hook
Colin's avatar
Colin committed
143
144
        self.mask = mask
        self.mask_dict = mask_dict
Rick Ho's avatar
Rick Ho committed
145
        self.moe_group = moe_group
Rick Ho's avatar
Rick Ho committed
146
147

    def expert_fn(self, inp, fwd_expert_count):
Sengxian's avatar
Sengxian committed
148
        r"""
Rick Ho's avatar
Rick Ho committed
149
150
        The default expert function which either calls the experts as a whole
        or as separate experts.
Sengxian's avatar
Sengxian committed
151
        """
152
        if self.experts_fused:
Rick Ho's avatar
Rick Ho committed
153
154
155
156
157
            return self.experts(inp, fwd_expert_count)
        outputs = []
        base_idx = 0
        for i in range(self.num_expert):
            batch_size = fwd_expert_count[i].item()
Sengxian's avatar
Sengxian committed
158
            inp_slice = inp[base_idx : base_idx + batch_size]
Rick Ho's avatar
Rick Ho committed
159
160
161
            outputs.append(self.experts[i](inp_slice))
            base_idx += batch_size
        return torch.cat(outputs, dim=0)
Rick Ho's avatar
Rick Ho committed
162

Sengxian's avatar
Sengxian committed
163
164
    def mark_parallel_comm(self, expert_dp_comm="none"):
        r"""
Rick Ho's avatar
Rick Ho committed
165
166
167
        Automatically mark the data parallel comms of the parameters within the
        module. This can be typically called at the end of the __init__ function
        in child classes.
Sengxian's avatar
Sengxian committed
168
        """
Rick Ho's avatar
Rick Ho committed
169
        if self.experts is not None:
170
            comm = expert_dp_comm
Rick Ho's avatar
Rick Ho committed
171
172
173
174
175
            if isinstance(self.experts, list):
                for e in self.experts:
                    mark_module_parallel_comm(e, comm)
            else:
                mark_module_parallel_comm(self.experts, comm)
Rick Ho's avatar
Rick Ho committed
176
        mark_module_parallel_comm(self.gate, "gate")
Rick Ho's avatar
Rick Ho committed
177

178
    def forward(self, moe_inp, non_moe_inp=None):
Sengxian's avatar
Sengxian committed
179
        r"""
Rick Ho's avatar
Rick Ho committed
180
181
182
        The FMoE module first computes gate output, and then conduct MoE forward
        according to the gate.  The score of the selected gate given by the
        expert is multiplied to the experts' output tensors as a weight.
Sengxian's avatar
Sengxian committed
183
        """
184
        if self.world_size > 1:
185
186
187
188
189

            def ensure_comm_func(tensor):
                ensure_comm(tensor, self.moe_group)

            tree.map_structure(ensure_comm_func, moe_inp)
Rick Ho's avatar
Rick Ho committed
190
        if self.slice_size > 1:
Sengxian's avatar
Sengxian committed
191

192
193
194
195
196
197
198
199
            def slice_func(tensor):
                return Slice.apply(
                    tensor, self.slice_rank, self.slice_size, self.slice_group
                )

            moe_inp = tree.map_structure(slice_func, moe_inp)

        gate_top_k_idx, gate_score = self.gate(moe_inp)
Rick Ho's avatar
Rick Ho committed
200

201
202
203
        if self.gate_hook is not None:
            self.gate_hook(gate_top_k_idx, gate_score, None)

204
205
206
207
208
209
        # TODO: to fix
        def delete_mask_func(tensor):
            # to: (BxL') x d_model
            tensor = tensor[mask == 0, :]
            return tensor

Colin's avatar
Colin committed
210
        # delete masked tensors
Colin's avatar
Colin committed
211
        if self.mask is not None and self.mask_dict is not None:
Colin's avatar
Colin committed
212
            mask = self.mask.view(-1)
213
            moe_inp = tree.map_structure(delete_mask_func, moe_inp)
Colin's avatar
Colin committed
214
215
216
            gate_top_k_idx = gate_top_k_idx[mask == 0, :]

        fwd = _fmoe_general_global_forward(
217
            moe_inp, gate_top_k_idx, self.expert_fn, self.num_expert, self.world_size
Sengxian's avatar
Sengxian committed
218
        )
219

Colin's avatar
Colin committed
220
        # recover deleted tensors
Colin's avatar
Colin committed
221
        if self.mask is not None and self.mask_dict is not None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

            def recover_func(tensor):
                # to: (BxL') x top_k x dim
                dim = tensor.shape[-1]
                tensor = tensor.view(-1, self.top_k, dim)
                # to: (BxL) x top_k x d_model
                x = torch.zeros(
                    mask.shape[0],
                    self.top_k,
                    dim,
                    device=tensor.device,
                    dtype=tensor.dtype,
                )
                # recover
                x[mask == 0] = tensor
                for k, v in self.mask_dict.items():
                    x[mask == k] = v
                return x

            moe_outp = tree.map_structure(recover_func, fwd)
Colin's avatar
Colin committed
242
243
        else:

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            def view_func(tensor):
                dim = tensor.shape[-1]
                tensor = tensor.view(-1, self.top_k, dim)
                return tensor

            moe_outp = tree.map_structure(view_func, fwd)

        gate_score = gate_score.view(-1, 1, self.top_k)

        def bmm_func(tensor):
            dim = tensor.shape[-1]
            tensor = torch.bmm(gate_score, tensor).reshape(-1, dim)
            return tensor

        moe_outp = tree.map_structure(bmm_func, moe_outp)
Sengxian's avatar
Sengxian committed
259

Rick Ho's avatar
Rick Ho committed
260
        if self.slice_size > 1:
261
262
263
264
265
266
267
268

            def all_gather_func(tensor):
                return AllGather.apply(
                    tensor, self.slice_rank, self.slice_size, self.slice_group
                )

            moe_outp = tree.map_structure(all_gather_func, moe_outp)
        return moe_outp