benchmark_mlp.py 3.74 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from fmoe import FMoETransformerMLP
from fmoe.gates import NaiveGate
from moe import BruteForceMoELinear
import torch
import torch.nn as nn
import time
import sys
import os


rank = None
world_size = None
dev_name_default = 'cuda:0'


class BruteForceMoE(nn.Module):
    def __init__(self, num_expert=32, d_model=1024, d_hidden=4096, 
            world_size=1, mp_group=None, 
            activation=torch.nn.functional.gelu,
            gate=NaiveGate, top_k=1, pre_lnorm=False):
        assert world_size == 1, 'Distributed brute force is not supported'
        super().__init__()
Rick Ho's avatar
Rick Ho committed
23
24
        self.mlp = BruteForceMoELinear(activation, num_expert, d_model,
                d_hidden, 1, top_k)
Rick Ho's avatar
Rick Ho committed
25
26
27
28
29
30
31
32
33
34
35
        self.top_k = top_k
        self.gate = gate(d_model, num_expert, world_size, top_k)
        self.pre_lnorm = pre_lnorm
        self.layer_norm = nn.LayerNorm(d_model)
        self.d_model = d_model

    def forward(self, inp):
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
        gate_top_k_idx, gate_score = self.gate(inp)
        inp = inp.repeat_interleave(repeats=self.top_k, dim=0)
Rick Ho's avatar
Rick Ho committed
36
        x = self.mlp(inp, gate_top_k_idx, gate_score)
Rick Ho's avatar
Rick Ho committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        if not self.pre_lnorm:
            x = self.layer_norm(x)
        return x


def benchmark_mlp(MOELayer, batch_size, in_feat, hidden_feat, num_expert, top_k):
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
    if rank == 0:
        print('Performance test of {} mm size {} {}x{} experts {}x{} topk {}'
                .format(MOELayer.__name__, batch_size, in_feat, hidden_feat,
                    world_size, num_expert, top_k)) 
    if world_size > 1:
        dev_name = 'cuda'
    else:
        dev_name = dev_name_default

    inp = torch.rand(batch_size, in_feat).cuda(dev_name)
    inp.requires_grad = True

    moe = MOELayer(num_expert=num_expert,
            d_model=in_feat, d_hidden=hidden_feat, 
            world_size=world_size, top_k=top_k).cuda(dev_name)
    moe.train()

    # warm up
    for _ in range(4):
        _ = moe(inp)

    n_runs = 16
    tott = 0.
    backt = 0.
    maxt = 0.
    sqtot = 0.
    for i in range(n_runs):
        ts = time.time()
        o = moe(inp)
        te = time.time()

        loss = o.sum()

        bts = time.time()
        loss.backward()
        bte = time.time()

        tott += te - ts
        sqtot += (te - ts)**2
        maxt = max(maxt, te - ts)
        backt += bte - bts

    gflops = 2e-9 * n_runs * (in_feat * hidden_feat * batch_size * top_k * 2 +
            batch_size * in_feat * num_expert) / tott
    print('Time mean/max/stdev/back {:.3f} {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs'.format(
        tott * 1e3 / n_runs, maxt * 1e3, 
        (sqtot / n_runs - (tott / n_runs)**2) * 1e3 * top_k / n_runs, 
        backt * 1e3 / n_runs, gflops))


if __name__ == '__main__':
    os.environ['RANK'] = os.environ.get('OMPI_COMM_WORLD_RANK', '0')
    os.environ['WORLD_SIZE'] = os.environ.get('OMPI_COMM_WORLD_SIZE', '1')
98
    os.environ['CUDA_VISIBLE_DEVICES'] = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK', '0')
Rick Ho's avatar
Rick Ho committed
99
100
101
102
103
104
105
106
107
108
    if int(os.environ['WORLD_SIZE']) > 1:
        torch.distributed.init_process_group(backend='nccl')
        rank = torch.distributed.get_rank()
        world_size = torch.distributed.get_world_size()
    else:
        rank = 0
        world_size = 1
    batch_size = int(os.environ.get('BATCH_SIZE', '4096'))
    d_model = int(os.environ.get('D_MODEL', '1024'))
    d_hidden = int(os.environ.get('D_HIDDEN', '4096'))
Rick Ho's avatar
Rick Ho committed
109
    num_expert = int(os.environ.get('NUM_EXPERT', '64'))
Rick Ho's avatar
Rick Ho committed
110
111
112
113
114
115
    top_k = int(os.environ.get('TOP_K', '2'))
    benchmark_mlp(FMoETransformerMLP, batch_size, d_model,
                    d_hidden, num_expert, top_k)
    if world_size == 1:
        benchmark_mlp(BruteForceMoE, batch_size, d_model, d_hidden, num_expert,
                top_k)