benchmark_mlp.py 3.9 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from fmoe import FMoETransformerMLP
from fmoe.gates import NaiveGate
from moe import BruteForceMoELinear
import torch
import torch.nn as nn
import time
import sys
import os


rank = None
world_size = None
dev_name_default = 'cuda:0'


class BruteForceMoE(nn.Module):
    def __init__(self, num_expert=32, d_model=1024, d_hidden=4096, 
            world_size=1, mp_group=None, 
            activation=torch.nn.functional.gelu,
            gate=NaiveGate, top_k=1, pre_lnorm=False):
        assert world_size == 1, 'Distributed brute force is not supported'
        super().__init__()
        self.mlp1 = BruteForceMoELinear(num_expert, d_model, d_hidden, 1)
        self.mlp2 = BruteForceMoELinear(num_expert, d_hidden, d_model, 1)
        self.activation = activation
        self.top_k = top_k
        self.gate = gate(d_model, num_expert, world_size, top_k)
        self.pre_lnorm = pre_lnorm
        self.layer_norm = nn.LayerNorm(d_model)
        self.d_model = d_model

    def forward(self, inp):
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
        gate_top_k_idx, gate_score = self.gate(inp)
        inp = inp.repeat_interleave(repeats=self.top_k, dim=0)
        x = self.mlp1(inp, gate_top_k_idx)
        x = self.activation(x)
        x = self.mlp2(x, gate_top_k_idx)
        x = x.view(-1, self.top_k, self.d_model)
        x = torch.bmm(gate_score, x).reshape(-1, self.d_model)
        if not self.pre_lnorm:
            x = self.layer_norm(x)
        return x


def benchmark_mlp(MOELayer, batch_size, in_feat, hidden_feat, num_expert, top_k):
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
    
    if rank == 0:
        print('Performance test of {} mm size {} {}x{} experts {}x{} topk {}'
                .format(MOELayer.__name__, batch_size, in_feat, hidden_feat,
                    world_size, num_expert, top_k)) 
    if world_size > 1:
        dev_name = 'cuda'
    else:
        dev_name = dev_name_default

    inp = torch.rand(batch_size, in_feat).cuda(dev_name)
    inp.requires_grad = True

    moe = MOELayer(num_expert=num_expert,
            d_model=in_feat, d_hidden=hidden_feat, 
            world_size=world_size, top_k=top_k).cuda(dev_name)
    moe.train()

    # warm up
    for _ in range(4):
        _ = moe(inp)

    n_runs = 16
    tott = 0.
    backt = 0.
    maxt = 0.
    sqtot = 0.
    for i in range(n_runs):
        ts = time.time()
        o = moe(inp)
        te = time.time()

        loss = o.sum()

        bts = time.time()
        loss.backward()
        bte = time.time()

        tott += te - ts
        sqtot += (te - ts)**2
        maxt = max(maxt, te - ts)
        backt += bte - bts

    gflops = 2e-9 * n_runs * (in_feat * hidden_feat * batch_size * top_k * 2 +
            batch_size * in_feat * num_expert) / tott
    print('Time mean/max/stdev/back {:.3f} {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs'.format(
        tott * 1e3 / n_runs, maxt * 1e3, 
        (sqtot / n_runs - (tott / n_runs)**2) * 1e3 * top_k / n_runs, 
        backt * 1e3 / n_runs, gflops))


if __name__ == '__main__':
    os.environ['RANK'] = os.environ.get('OMPI_COMM_WORLD_RANK', '0')
    os.environ['WORLD_SIZE'] = os.environ.get('OMPI_COMM_WORLD_SIZE', '1')
    if int(os.environ['WORLD_SIZE']) > 1:
        torch.distributed.init_process_group(backend='nccl')
        rank = torch.distributed.get_rank()
        world_size = torch.distributed.get_world_size()
    else:
        rank = 0
        world_size = 1
   
    batch_size = int(os.environ.get('BATCH_SIZE', '4096'))
    d_model = int(os.environ.get('D_MODEL', '1024'))
    d_hidden = int(os.environ.get('D_HIDDEN', '4096'))
    num_expert = int(os.environ.get('NUM_EXPERT', '8'))
    top_k = int(os.environ.get('TOP_K', '2'))
    benchmark_mlp(FMoETransformerMLP, batch_size, d_model,
                    d_hidden, num_expert, top_k)
    if world_size == 1:
        benchmark_mlp(BruteForceMoE, batch_size, d_model, d_hidden, num_expert,
                top_k)