benchmark_mlp.py 4.03 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
import torch
import torch.nn as nn
Rick Ho's avatar
Rick Ho committed
3
4
5
6
7
8
9
10
11
12
from fmoe import FMoETransformerMLP
from fmoe.gates import NaiveGate
from moe import BruteForceMoELinear
import time
import sys
import os


rank = None
world_size = None
Sengxian's avatar
Sengxian committed
13
dev_name_default = "cuda:0"
Rick Ho's avatar
Rick Ho committed
14
15
16


class BruteForceMoE(nn.Module):
Sengxian's avatar
Sengxian committed
17
18
19
20
21
22
23
24
25
26
27
28
29
    def __init__(
        self,
        num_expert=32,
        d_model=1024,
        d_hidden=4096,
        world_size=1,
        mp_group=None,
        activation=torch.nn.functional.gelu,
        gate=NaiveGate,
        top_k=1,
        pre_lnorm=False,
    ):
        assert world_size == 1, "Distributed brute force is not supported"
Rick Ho's avatar
Rick Ho committed
30
        super().__init__()
Sengxian's avatar
Sengxian committed
31
32
33
        self.mlp = BruteForceMoELinear(
            activation, num_expert, d_model, d_hidden, 1, top_k
        )
Rick Ho's avatar
Rick Ho committed
34
35
36
37
38
39
40
41
42
43
44
        self.top_k = top_k
        self.gate = gate(d_model, num_expert, world_size, top_k)
        self.pre_lnorm = pre_lnorm
        self.layer_norm = nn.LayerNorm(d_model)
        self.d_model = d_model

    def forward(self, inp):
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
        gate_top_k_idx, gate_score = self.gate(inp)
        inp = inp.repeat_interleave(repeats=self.top_k, dim=0)
Rick Ho's avatar
Rick Ho committed
45
        x = self.mlp(inp, gate_top_k_idx, gate_score)
Rick Ho's avatar
Rick Ho committed
46
47
48
49
50
51
52
53
54
        if not self.pre_lnorm:
            x = self.layer_norm(x)
        return x


def benchmark_mlp(MOELayer, batch_size, in_feat, hidden_feat, num_expert, top_k):
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
    if rank == 0:
Sengxian's avatar
Sengxian committed
55
56
57
58
59
60
61
62
63
64
65
        print(
            "Performance test of {} mm size {} {}x{} experts {}x{} topk {}".format(
                MOELayer.__name__,
                batch_size,
                in_feat,
                hidden_feat,
                world_size,
                num_expert,
                top_k,
            )
        )
Rick Ho's avatar
Rick Ho committed
66
    if world_size > 1:
Sengxian's avatar
Sengxian committed
67
        dev_name = "cuda"
Rick Ho's avatar
Rick Ho committed
68
69
70
71
72
73
    else:
        dev_name = dev_name_default

    inp = torch.rand(batch_size, in_feat).cuda(dev_name)
    inp.requires_grad = True

Sengxian's avatar
Sengxian committed
74
75
76
77
78
79
80
    moe = MOELayer(
        num_expert=num_expert,
        d_model=in_feat,
        d_hidden=hidden_feat,
        world_size=world_size,
        top_k=top_k,
    ).cuda(dev_name)
Rick Ho's avatar
Rick Ho committed
81
82
83
84
85
86
87
    moe.train()

    # warm up
    for _ in range(4):
        _ = moe(inp)

    n_runs = 16
Sengxian's avatar
Sengxian committed
88
89
90
91
    tott = 0.0
    backt = 0.0
    maxt = 0.0
    sqtot = 0.0
Rick Ho's avatar
Rick Ho committed
92
93
94
95
96
97
98
99
100
101
102
103
    for i in range(n_runs):
        ts = time.time()
        o = moe(inp)
        te = time.time()

        loss = o.sum()

        bts = time.time()
        loss.backward()
        bte = time.time()

        tott += te - ts
Sengxian's avatar
Sengxian committed
104
        sqtot += (te - ts) ** 2
Rick Ho's avatar
Rick Ho committed
105
106
107
        maxt = max(maxt, te - ts)
        backt += bte - bts

Sengxian's avatar
Sengxian committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    gflops = (
        2e-9
        * n_runs
        * (
            in_feat * hidden_feat * batch_size * top_k * 2
            + batch_size * in_feat * num_expert
        )
        / tott
    )
    print(
        "Time mean/max/stdev/back {:.3f} {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs".format(
            tott * 1e3 / n_runs,
            maxt * 1e3,
            (sqtot / n_runs - (tott / n_runs) ** 2) * 1e3 * top_k / n_runs,
            backt * 1e3 / n_runs,
            gflops,
        )
    )


if __name__ == "__main__":
    os.environ["RANK"] = os.environ.get("OMPI_COMM_WORLD_RANK", "0")
    os.environ["WORLD_SIZE"] = os.environ.get("OMPI_COMM_WORLD_SIZE", "1")
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get(
        "OMPI_COMM_WORLD_LOCAL_RANK", "0"
    )
    if int(os.environ["WORLD_SIZE"]) > 1:
        torch.distributed.init_process_group(backend="nccl")
Rick Ho's avatar
Rick Ho committed
136
137
138
139
140
        rank = torch.distributed.get_rank()
        world_size = torch.distributed.get_world_size()
    else:
        rank = 0
        world_size = 1
Sengxian's avatar
Sengxian committed
141
142
143
144
145
146
    batch_size = int(os.environ.get("BATCH_SIZE", "4096"))
    d_model = int(os.environ.get("D_MODEL", "1024"))
    d_hidden = int(os.environ.get("D_HIDDEN", "4096"))
    num_expert = int(os.environ.get("NUM_EXPERT", "64"))
    top_k = int(os.environ.get("TOP_K", "2"))
    benchmark_mlp(FMoETransformerMLP, batch_size, d_model, d_hidden, num_expert, top_k)
Rick Ho's avatar
Rick Ho committed
147
    if world_size == 1:
Sengxian's avatar
Sengxian committed
148
        benchmark_mlp(BruteForceMoE, batch_size, d_model, d_hidden, num_expert, top_k)