distributed.py 4.34 KB
Newer Older
Sengxian's avatar
Sengxian committed
1
r"""
Rick Ho's avatar
Rick Ho committed
2
Supportive modules to conduct distributed training
Sengxian's avatar
Sengxian committed
3
"""
4
5
6
import torch
import torch.nn as nn
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
7
from .utils import get_torch_default_comm
8
9
10


class DistributedGroupedDataParallel(nn.Module):
Sengxian's avatar
Sengxian committed
11
    r"""
Rick Ho's avatar
Rick Ho committed
12
13
14
15
16
17
18
19
20
21
22
    A customized DDP module to support different all-reduce regions in the
    model.  The all-reduce region is defined as an attribution `dp_comm` in the
    weight object.
    The grads of the weights are identified to be reduced in different groups
    according to the weigths' `dp_comm` attribute.
    If it is set to `dp`, it will only be reduced across the data-parallel
    groups, which means that in the model parallel group, they are not
    synchronized.
    If it is set to `world`, the gradients is synchronized across all workers,
    regardless their model or data parallel group. This is extremely useful for
    shared layers like the gate.
Sengxian's avatar
Sengxian committed
23
24
25
26
27
28
    """

    def __init__(
        self,
        module,
        auto_allreduce=False,
Rick Ho's avatar
Rick Ho committed
29
        **kwargs
Sengxian's avatar
Sengxian committed
30
31
    ):
        assert not auto_allreduce, "Automatic all-reduce is not implemented yet"
32

Rick Ho's avatar
Rick Ho committed
33
        super().__init__()
34
35
36
        self.module = module

        self.comms = dict()
Rick Ho's avatar
Rick Ho committed
37
38
39
40
41
42
        for k in kwargs:
            if k.endswith('_group'):
                self.comms[k[:-6]] = kwargs[k]
        for k in ['dp', 'gate', 'moe', 'world']:
            if k not in self.comms:
                self.comms[k] = get_torch_default_comm()
43

Rick Ho's avatar
Rick Ho committed
44
45
        def allreduce_params(no_scale=False,
                reduce_after=False, fp32_allreduce=False):
46
47
48
49
            groups = dict()
            for p in self.module.parameters():
                if not p.requires_grad or p.grad is None:
                    continue
Sengxian's avatar
Sengxian committed
50
                if hasattr(p, "dp_comm"):
Rick Ho's avatar
Rick Ho committed
51
                    dp_comm = p.dp_comm
52
                else:
Sengxian's avatar
Sengxian committed
53
                    dp_comm = "dp"
Rick Ho's avatar
Rick Ho committed
54
                group_key = (dp_comm, p.dtype)
55
56
57
58
                if group_key not in groups:
                    groups[group_key] = [p]
                else:
                    groups[group_key].append(p)
Rick Ho's avatar
Rick Ho committed
59
            for (dp_comm, dtype), group in groups.items():
Rick Ho's avatar
Rick Ho committed
60
                if dp_comm not in self.comms:
61
                    continue
Rick Ho's avatar
Rick Ho committed
62
                comm = self.comms[dp_comm]
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                grads = [p.grad.data for p in group]
                coalesced = _flatten_dense_tensors(grads)
                if fp32_allreduce and dtype != torch.float32:
                    coalesced = coalesced.float()
                if not no_scale and not reduce_after:
                    coalesced /= comm.size()
                torch.distributed.all_reduce(coalesced, group=comm)
                torch.cuda.synchronize()
                if not no_scale and reduce_after:
                    coalesced /= comm.size()
                synced = _unflatten_dense_tensors(coalesced, grads)
                for g, s in zip(grads, synced):
                    g.copy_(s)

        self.allreduce_params = allreduce_params
Rick Ho's avatar
Rick Ho committed
78
        self._sync_params()
79

Rick Ho's avatar
Rick Ho committed
80
    def _sync_params(self):
Rick Ho's avatar
Rick Ho committed
81
82
83
84
85
86
        r"""
        Note that this module does not guarantee initial consistency of
        parameters. Users are supposed to manually initalize the model on
        different workers with the same parameters using either this function
        or other methods like pre-defined random seeds. 
        """
Rick Ho's avatar
Rick Ho committed
87
88
89
90
        groups = dict()
        for p in self.module.parameters():
            if not p.requires_grad or p.grad is None:
                continue
Sengxian's avatar
Sengxian committed
91
            if hasattr(p, "dp_comm"):
Rick Ho's avatar
Rick Ho committed
92
93
                dp_comm = p.dp_comm
            else:
Sengxian's avatar
Sengxian committed
94
                dp_comm = "dp"
Rick Ho's avatar
Rick Ho committed
95
96
97
98
99
            group_key = (dp_comm, p.dtype)
            if group_key not in groups:
                groups[group_key] = [p]
            else:
                groups[group_key].append(p)
Rick Ho's avatar
Rick Ho committed
100
        for (dp_comm, _), group in groups.items():
Rick Ho's avatar
Rick Ho committed
101
102
103
104
105
106
107
108
109
110
            if dp_comm not in self.comms:
                continue
            comm = self.comms[dp_comm]
            datas = [p.data for p in group]
            coalesced = _flatten_dense_tensors(datas)
            torch.distributed.broadcast(coalesced, 0, group=comm)
            torch.cuda.synchronize()
            synced = _unflatten_dense_tensors(coalesced, datas)
            for d, s in zip(datas, synced):
                d.copy_(s)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
111

112
    def forward(self, *args, **kwargs):
Sengxian's avatar
Sengxian committed
113
        r"""
Rick Ho's avatar
Rick Ho committed
114
        Directly call the module's forward function.
Sengxian's avatar
Sengxian committed
115
        """
116
        return self.module(*args, **kwargs)