qwen.py 3.6 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import torch
import numpy as np
import argparse
import threading
from CMMLU.src.mp_utils import choices, format_example, gen_prompt, softmax, run_eval

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig


def chat(model, tokenizer, prompt, output_list, idx):
    pred, history = model.chat(tokenizer, prompt, history=[], max_length = 5)
    if pred[0] not in choices:
        pred, history = model.chat(tokenizer, prompt, history=[], max_length = 1000)
    output_list[idx] = pred

def eval_chat_multithread(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):
    cors = []
    all_preds = []
    answers = choices[: test_df.shape[1] - 2]

    batch_num = 1
    output_list = ["" for i in range(test_df.shape[0])]
    ths = [None for i in range(test_df.shape[0])]

    for j in range(0, test_df.shape[0], batch_num):
        cur_len = min(test_df.shape[0] - j, batch_num)
        for i in range(j, j + cur_len):
            prompt_end = format_example(test_df, i, subject, include_answer=False, cot=cot)
            prompt = gen_prompt(dev_df=dev_df,
                                subject=subject,
                                prompt_end=prompt_end,
                                num_few_shot=num_few_shot,
                                tokenizer=tokenizer,
                                max_length=max_length,
                                cot=cot)
            ths[i] = threading.Thread(target = chat, args=(model, tokenizer, prompt, output_list, i))
            ths[i].start()
        for i in range(j, j + cur_len):
            ths[i].join()
            pred = output_list[i]
            label = test_df.iloc[i, test_df.shape[1] - 1]
            if pred and pred[0] in choices:
                cors.append(pred[0] == label)
            all_preds.append(pred.replace("\n", ""))
            print(i, test_df.shape[0], np.mean(cors))
    acc = np.mean(cors)
    print("Average accuracy {:.3f} - {}".format(acc, subject))
    print("{} results, {} inappropriate formated answers.".format(len(cors), len(all_preds)-len(cors)))
    return acc, all_preds, None


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name_or_path", type=str, default="")
    parser.add_argument("--lora_weights", type=str, default="")
    parser.add_argument("--data_dir", type=str, default="./CMMLU/data")
    parser.add_argument("--save_dir", type=str, default="../results/not_specified")
    parser.add_argument("--num_few_shot", type=int, default=0)
    parser.add_argument("--max_length", type=int, default=2048)
    parser.add_argument("--load_in_8bit", action='store_true')
    parser.add_argument("--dtype", type=str, default="float16")
    parser.add_argument("--with_conf", action='store_true')
    parser.add_argument("--cot", action='store_true')
    args = parser.parse_args()

    # TODO: better handle
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="cpu", trust_remote_code=True, fp16=True).eval()
    model.generation_config = GenerationConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True)
    if args.lora_weights != "":
        model = PeftModel.from_pretrained(
            model,
            args.lora_weights,
            torch_dtype=torch.float16,
        )

    from fastllm_pytools import llm;
    model = llm.from_hf(model, tokenizer, dtype = args.dtype)
    model.direct_query = True

    run_eval(model, tokenizer, eval_chat_multithread, args)