import os import torch import numpy as np import argparse import threading from CMMLU.src.mp_utils import choices, format_example, gen_prompt, softmax, run_eval from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig def chat(model, tokenizer, prompt, output_list, idx): pred, history = model.chat(tokenizer, prompt, history=[], max_length = 5) if pred[0] not in choices: pred, history = model.chat(tokenizer, prompt, history=[], max_length = 1000) output_list[idx] = pred def eval_chat_multithread(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot): cors = [] all_preds = [] answers = choices[: test_df.shape[1] - 2] batch_num = 1 output_list = ["" for i in range(test_df.shape[0])] ths = [None for i in range(test_df.shape[0])] for j in range(0, test_df.shape[0], batch_num): cur_len = min(test_df.shape[0] - j, batch_num) for i in range(j, j + cur_len): prompt_end = format_example(test_df, i, subject, include_answer=False, cot=cot) prompt = gen_prompt(dev_df=dev_df, subject=subject, prompt_end=prompt_end, num_few_shot=num_few_shot, tokenizer=tokenizer, max_length=max_length, cot=cot) ths[i] = threading.Thread(target = chat, args=(model, tokenizer, prompt, output_list, i)) ths[i].start() for i in range(j, j + cur_len): ths[i].join() pred = output_list[i] label = test_df.iloc[i, test_df.shape[1] - 1] if pred and pred[0] in choices: cors.append(pred[0] == label) all_preds.append(pred.replace("\n", "")) print(i, test_df.shape[0], np.mean(cors)) acc = np.mean(cors) print("Average accuracy {:.3f} - {}".format(acc, subject)) print("{} results, {} inappropriate formated answers.".format(len(cors), len(all_preds)-len(cors))) return acc, all_preds, None if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_name_or_path", type=str, default="") parser.add_argument("--lora_weights", type=str, default="") parser.add_argument("--data_dir", type=str, default="./CMMLU/data") parser.add_argument("--save_dir", type=str, default="../results/not_specified") parser.add_argument("--num_few_shot", type=int, default=0) parser.add_argument("--max_length", type=int, default=2048) parser.add_argument("--load_in_8bit", action='store_true') parser.add_argument("--dtype", type=str, default="float16") parser.add_argument("--with_conf", action='store_true') parser.add_argument("--cot", action='store_true') args = parser.parse_args() # TODO: better handle tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="cpu", trust_remote_code=True, fp16=True).eval() model.generation_config = GenerationConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True) if args.lora_weights != "": model = PeftModel.from_pretrained( model, args.lora_weights, torch_dtype=torch.float16, ) from fastllm_pytools import llm; model = llm.from_hf(model, tokenizer, dtype = args.dtype) model.direct_query = True run_eval(model, tokenizer, eval_chat_multithread, args)