README.md 9.9 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
![](/assets/fold.jpg)

shenggan's avatar
shenggan committed
3
# FastFold
Shenggan's avatar
Shenggan committed
4

Shenggan's avatar
Shenggan committed
5
[![](https://img.shields.io/badge/Paper-PDF-green?style=flat&logo=arXiv&logoColor=green)](https://arxiv.org/abs/2203.00854)
Shenggan's avatar
Shenggan committed
6
![](https://img.shields.io/badge/Made%20with-ColossalAI-blueviolet?style=flat)
7
![](https://img.shields.io/badge/Habana-support-blue?style=flat&logo=intel&logoColor=blue)
Shenggan's avatar
Shenggan committed
8
9
![](https://img.shields.io/github/v/release/hpcaitech/FastFold)
[![GitHub license](https://img.shields.io/github/license/hpcaitech/FastFold)](https://github.com/hpcaitech/FastFold/blob/main/LICENSE)
Shenggan's avatar
Shenggan committed
10

11
12
13
14
15
16
17
## News :triangular_flag_on_post:
- [2023/01] Compatible with AlphaFold v2.3
- [2023/01] Added support for inference and training of AlphaFold on [Intel Habana](https://habana.ai/) platform. For usage instructions, see [here](#Inference-or-Training-on-Intel-Habana).

<br>

Optimizing Protein Structure Prediction Model Training and Inference on Heterogeneous Clusters
Shenggan's avatar
Shenggan committed
18
19
20
21
22
23

FastFold provides a **high-performance implementation of Evoformer** with the following characteristics.

1. Excellent kernel performance on GPU platform
2. Supporting Dynamic Axial Parallelism(DAP)
    * Break the memory limit of single GPU and reduce the overall training time
Shenggan's avatar
Shenggan committed
24
    * DAP can significantly speed up inference and make ultra-long sequence inference possible
Shenggan's avatar
Shenggan committed
25
3. Ease of use
Shenggan's avatar
Shenggan committed
26
    * Huge performance gains with a few lines changes
Shenggan's avatar
Shenggan committed
27
    * You don't need to care about how the parallel part is implemented
28
29
4. Faster data processing, about 3x times faster on monomer, about 3Nx times faster on multimer with N sequence.
5. Great Reduction on GPU memory, able to inference sequence containing more than **10000** residues.
Shenggan's avatar
Shenggan committed
30
31
32

## Installation

oahzxl's avatar
oahzxl committed
33
To install FastFold, you will need:
LuGY's avatar
LuGY committed
34
+ Python 3.8 or 3.9.
oahzxl's avatar
oahzxl committed
35
36
+ [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 11.3 or above
+ PyTorch 1.12 or above 
LuGY's avatar
LuGY committed
37

38
39
40
41
42
For now, You can install FastFold:
### Using Conda (Recommended)

We highly recommend installing an Anaconda or Miniconda environment and install PyTorch with conda.
Lines below would create a new conda environment called "fastfold":
Shenggan's avatar
Shenggan committed
43

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
44
45
46
```shell
git clone https://github.com/hpcaitech/FastFold
cd FastFold
Shenggan's avatar
Shenggan committed
47
conda env create --name=fastfold -f environment.yml
Shenggan's avatar
Shenggan committed
48
conda activate fastfold
49
python setup.py install
Shenggan's avatar
Shenggan committed
50
51
```

52
53
#### Advanced

oahzxl's avatar
oahzxl committed
54
To leverage the power of FastFold, we recommend you to install [Triton](https://github.com/openai/triton).
55
56

```bash
oahzxl's avatar
oahzxl committed
57
pip install triton==2.0.0.dev20221005
58
59
60
```


61
62
### Using PyPi
You can download FastFold with pre-built CUDA extensions.
Shenggan's avatar
Shenggan committed
63

64
65
Warning, only stable versions available.

Shenggan's avatar
Shenggan committed
66
```shell
67
68
69
70
71
72
73
74
75
76
77
pip install fastfold -f https://release.colossalai.org/fastfold
```

## Use Docker

### Build On Your Own
Run the following command to build a docker image from Dockerfile provided.

> Building FastFold from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).

```shell
78
79
cd FastFold
docker build -t fastfold ./docker
80
81
82
83
84
```

Run the following command to start the docker container in interactive mode.
```shell
docker run -ti --gpus all --rm --ipc=host fastfold bash
Shenggan's avatar
Shenggan committed
85
86
```

Shenggan's avatar
Shenggan committed
87
88
## Usage

89
You can use `Evoformer` as `nn.Module` in your project after `from fastfold.model.fastnn import Evoformer`:
Shenggan's avatar
Shenggan committed
90
91

```python
92
from fastfold.model.fastnn import Evoformer
Shenggan's avatar
Shenggan committed
93
94
95
evoformer_layer = Evoformer()
```

Shenggan's avatar
Shenggan committed
96
If you want to use Dynamic Axial Parallelism, add a line of initialize with `fastfold.distributed.init_dap`.
Shenggan's avatar
Shenggan committed
97
98
99
100
101
102
103

```python
from fastfold.distributed import init_dap

init_dap(args.dap_size)
```

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
104
105
106
107
108
### Download the dataset
You can down the dataset used to train FastFold  by the script `download_all_data.sh`:

    ./scripts/download_all_data.sh data/

109
110
### Inference

Shenggan's avatar
Shenggan committed
111
You can use FastFold with `inject_fastnn`. This will replace the evoformer from OpenFold with the high performance evoformer from FastFold.
112
113

```python
114
from fastfold.utils import inject_fastnn
115
116
117
118

model = AlphaFold(config)
import_jax_weights_(model, args.param_path, version=args.model_name)

119
model = inject_fastnn(model)
120
121
122
123
124
```

For Dynamic Axial Parallelism, you can refer to `./inference.py`. Here is an example of 2 GPUs parallel inference:

```shell
125
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
Shenggan's avatar
Shenggan committed
126
    --output_dir ./ \
127
    --gpus 2 \
128
129
130
131
132
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
Shenggan's avatar
Shenggan committed
133
134
135
136
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
137
```
LuGY's avatar
LuGY committed
138
139
140
141
142
143
or run the script `./inference.sh`, you can change the parameter in the script, especisally those data path.
```shell
./inference.sh
```

#### inference with data workflow
lclgy's avatar
lclgy committed
144
Alphafold's data pre-processing takes a lot of time, so we speed up the data pre-process by [ray](https://docs.ray.io/en/latest/workflows/concepts.html) workflow, which achieves a 3x times faster speed. To run the inference with ray workflow, you should install the package and add parameter `--enable_workflow` to cmdline or shell script `./inference.sh`
LuGY's avatar
LuGY committed
145
```shell
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
146
pip install ray==2.0.0 pyarrow
LuGY's avatar
LuGY committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
```
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --enable_workflow 
```

oahzxl's avatar
oahzxl committed
164
165
166
167
#### inference with lower memory usage
Alphafold's embedding presentations take up a lot of memory as the sequence length increases. To reduce memory usage, 
you should add parameter `--chunk_size [N]` and `--inplace` to cmdline or shell script `./inference.sh`. 
The smaller you set N, the less memory will be used, but it will affect the speed. We can inference 
168
169
170
a sequence of length 10000 in bf16 with 61GB memory on a Nvidia A100(80GB). For fp32, the max length is 8000.
> You need to set `PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:15000` to inference such an extreme long sequence.

oahzxl's avatar
oahzxl committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --chunk_size N \
    --inplace
```
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#### inference multimer sequence
Alphafold Multimer is supported. You can the following cmd or shell script `./inference_multimer.sh`.
Workflow and memory parameters mentioned above can also be used.
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --model_preset multimer \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --uniprot_database_path data/uniprot/uniprot_sprot.fasta \
    --pdb_seqres_database_path data/pdb_seqres/pdb_seqres.txt  \
    --param_path data/params/params_model_1_multimer.npz \
    --model_name model_1_multimer \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
```

211
212
213
214
215
216
217
218
219
220
221
### Inference or Training on Intel Habana

To run AlphaFold inference or training on Intel Habana, you can follow the instructions in the [Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/) to set up your environment on Amazon EC2 DL1 instances or on-premise environments.

Once you have prepared your dataset and installed fastfold, you can use the following scripts:

```shell
bash habana/inference.sh
bash habana/train.sh
```

Shenggan's avatar
Shenggan committed
222
223
224
225
226
227
228
229
230
## Performance Benchmark

We have included a performance benchmark script in `./benchmark`. You can benchmark the performance of Evoformer using different settings.

```shell
cd ./benchmark
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256
```

Shenggan's avatar
Shenggan committed
231
232
233
234
235
236
237
Benchmark Dynamic Axial Parallelism with 2 GPUs:

```shell
cd ./benchmark
torchrun --nproc_per_node=2 perf.py --msa-length 128 --res-length 256 --dap-size 2
```

Shenggan's avatar
Shenggan committed
238
239
240
241
242
243
244
245
246
247
248
If you want to benchmark with [OpenFold](https://github.com/aqlaboratory/openfold), you need to install OpenFold first and benchmark with option `--openfold`:

```shell
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256 --openfold
```

## Cite us

Cite this paper, if you use FastFold in your research publication.

```
Shenggan's avatar
Shenggan committed
249
250
251
252
253
254
255
256
@misc{cheng2022fastfold,
      title={FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours}, 
      author={Shenggan Cheng and Ruidong Wu and Zhongming Yu and Binrui Li and Xiwen Zhang and Jian Peng and Yang You},
      year={2022},
      eprint={2203.00854},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Shenggan's avatar
Shenggan committed
257
```
258
259
260
261

## Acknowledgments

We would like to extend our special thanks to the Intel Habana team for their support in providing us with technology and resources on the Habana platform.