README.md 9.04 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
![](/assets/fold.jpg)

shenggan's avatar
shenggan committed
3
# FastFold
Shenggan's avatar
Shenggan committed
4

Shenggan's avatar
Shenggan committed
5
[![](https://img.shields.io/badge/Paper-PDF-green?style=flat&logo=arXiv&logoColor=green)](https://arxiv.org/abs/2203.00854)
Shenggan's avatar
Shenggan committed
6
![](https://img.shields.io/badge/Made%20with-ColossalAI-blueviolet?style=flat)
Shenggan's avatar
Shenggan committed
7
8
![](https://img.shields.io/github/v/release/hpcaitech/FastFold)
[![GitHub license](https://img.shields.io/github/license/hpcaitech/FastFold)](https://github.com/hpcaitech/FastFold/blob/main/LICENSE)
Shenggan's avatar
Shenggan committed
9

shenggan's avatar
shenggan committed
10
Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters
Shenggan's avatar
Shenggan committed
11
12
13
14
15
16

FastFold provides a **high-performance implementation of Evoformer** with the following characteristics.

1. Excellent kernel performance on GPU platform
2. Supporting Dynamic Axial Parallelism(DAP)
    * Break the memory limit of single GPU and reduce the overall training time
Shenggan's avatar
Shenggan committed
17
    * DAP can significantly speed up inference and make ultra-long sequence inference possible
Shenggan's avatar
Shenggan committed
18
3. Ease of use
Shenggan's avatar
Shenggan committed
19
    * Huge performance gains with a few lines changes
Shenggan's avatar
Shenggan committed
20
    * You don't need to care about how the parallel part is implemented
21
22
4. Faster data processing, about 3x times faster on monomer, about 3Nx times faster on multimer with N sequence.
5. Great Reduction on GPU memory, able to inference sequence containing more than **10000** residues.
Shenggan's avatar
Shenggan committed
23
24
25

## Installation

26
To install and use FastFold, you will need:
LuGY's avatar
LuGY committed
27
+ Python 3.8 or 3.9.
28
29
30
+ [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 11.1 or above
+ PyTorch 1.10 or above 

LuGY's avatar
LuGY committed
31

32
33
34
35
36
For now, You can install FastFold:
### Using Conda (Recommended)

We highly recommend installing an Anaconda or Miniconda environment and install PyTorch with conda.
Lines below would create a new conda environment called "fastfold":
Shenggan's avatar
Shenggan committed
37

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
38
39
40
```shell
git clone https://github.com/hpcaitech/FastFold
cd FastFold
Shenggan's avatar
Shenggan committed
41
conda env create --name=fastfold -f environment.yml
Shenggan's avatar
Shenggan committed
42
conda activate fastfold
43
python setup.py install
Shenggan's avatar
Shenggan committed
44
45
```

46
47
48
49
50
51
52
53
54
55
56
57
58
#### Advanced

To leverage the power of FastFold, we recommend you build [Triton]() from source.

**[NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 11.4 or above is needed.**

```bash
git clone https://github.com/openai/triton.git ~/triton
cd ~/triton/python
pip install -e .
```


59
60
### Using PyPi
You can download FastFold with pre-built CUDA extensions.
Shenggan's avatar
Shenggan committed
61

62
63
Warning, only stable versions available.

Shenggan's avatar
Shenggan committed
64
```shell
65
66
67
68
69
70
71
72
73
74
75
pip install fastfold -f https://release.colossalai.org/fastfold
```

## Use Docker

### Build On Your Own
Run the following command to build a docker image from Dockerfile provided.

> Building FastFold from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).

```shell
76
77
cd FastFold
docker build -t fastfold ./docker
78
79
80
81
82
```

Run the following command to start the docker container in interactive mode.
```shell
docker run -ti --gpus all --rm --ipc=host fastfold bash
Shenggan's avatar
Shenggan committed
83
84
```

Shenggan's avatar
Shenggan committed
85
86
## Usage

87
You can use `Evoformer` as `nn.Module` in your project after `from fastfold.model.fastnn import Evoformer`:
Shenggan's avatar
Shenggan committed
88
89

```python
90
from fastfold.model.fastnn import Evoformer
Shenggan's avatar
Shenggan committed
91
92
93
evoformer_layer = Evoformer()
```

Shenggan's avatar
Shenggan committed
94
If you want to use Dynamic Axial Parallelism, add a line of initialize with `fastfold.distributed.init_dap`.
Shenggan's avatar
Shenggan committed
95
96
97
98
99
100
101

```python
from fastfold.distributed import init_dap

init_dap(args.dap_size)
```

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
102
103
104
105
106
### Download the dataset
You can down the dataset used to train FastFold  by the script `download_all_data.sh`:

    ./scripts/download_all_data.sh data/

107
108
### Inference

Shenggan's avatar
Shenggan committed
109
You can use FastFold with `inject_fastnn`. This will replace the evoformer from OpenFold with the high performance evoformer from FastFold.
110
111

```python
112
from fastfold.utils import inject_fastnn
113
114
115
116

model = AlphaFold(config)
import_jax_weights_(model, args.param_path, version=args.model_name)

117
model = inject_fastnn(model)
118
119
120
121
122
```

For Dynamic Axial Parallelism, you can refer to `./inference.py`. Here is an example of 2 GPUs parallel inference:

```shell
123
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
Shenggan's avatar
Shenggan committed
124
    --output_dir ./ \
125
    --gpus 2 \
126
127
128
129
130
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
Shenggan's avatar
Shenggan committed
131
132
133
134
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
135
```
LuGY's avatar
LuGY committed
136
137
138
139
140
141
or run the script `./inference.sh`, you can change the parameter in the script, especisally those data path.
```shell
./inference.sh
```

#### inference with data workflow
lclgy's avatar
lclgy committed
142
Alphafold's data pre-processing takes a lot of time, so we speed up the data pre-process by [ray](https://docs.ray.io/en/latest/workflows/concepts.html) workflow, which achieves a 3x times faster speed. To run the inference with ray workflow, you should install the package and add parameter `--enable_workflow` to cmdline or shell script `./inference.sh`
LuGY's avatar
LuGY committed
143
```shell
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
144
pip install ray==2.0.0 pyarrow
LuGY's avatar
LuGY committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
```
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --enable_workflow 
```

oahzxl's avatar
oahzxl committed
162
163
164
165
#### inference with lower memory usage
Alphafold's embedding presentations take up a lot of memory as the sequence length increases. To reduce memory usage, 
you should add parameter `--chunk_size [N]` and `--inplace` to cmdline or shell script `./inference.sh`. 
The smaller you set N, the less memory will be used, but it will affect the speed. We can inference 
166
167
168
a sequence of length 10000 in bf16 with 61GB memory on a Nvidia A100(80GB). For fp32, the max length is 8000.
> You need to set `PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:15000` to inference such an extreme long sequence.

oahzxl's avatar
oahzxl committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --chunk_size N \
    --inplace
```
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#### inference multimer sequence
Alphafold Multimer is supported. You can the following cmd or shell script `./inference_multimer.sh`.
Workflow and memory parameters mentioned above can also be used.
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --model_preset multimer \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --uniprot_database_path data/uniprot/uniprot_sprot.fasta \
    --pdb_seqres_database_path data/pdb_seqres/pdb_seqres.txt  \
    --param_path data/params/params_model_1_multimer.npz \
    --model_name model_1_multimer \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
```

Shenggan's avatar
Shenggan committed
209
210
211
212
213
214
215
216
217
## Performance Benchmark

We have included a performance benchmark script in `./benchmark`. You can benchmark the performance of Evoformer using different settings.

```shell
cd ./benchmark
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256
```

Shenggan's avatar
Shenggan committed
218
219
220
221
222
223
224
Benchmark Dynamic Axial Parallelism with 2 GPUs:

```shell
cd ./benchmark
torchrun --nproc_per_node=2 perf.py --msa-length 128 --res-length 256 --dap-size 2
```

Shenggan's avatar
Shenggan committed
225
226
227
228
229
230
231
232
233
234
235
If you want to benchmark with [OpenFold](https://github.com/aqlaboratory/openfold), you need to install OpenFold first and benchmark with option `--openfold`:

```shell
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256 --openfold
```

## Cite us

Cite this paper, if you use FastFold in your research publication.

```
Shenggan's avatar
Shenggan committed
236
237
238
239
240
241
242
243
@misc{cheng2022fastfold,
      title={FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours}, 
      author={Shenggan Cheng and Ruidong Wu and Zhongming Yu and Binrui Li and Xiwen Zhang and Jian Peng and Yang You},
      year={2022},
      eprint={2203.00854},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Shenggan's avatar
Shenggan committed
244
```