inference.py 9.89 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Shenggan's avatar
Shenggan committed
22
23
24

import numpy as np
import torch
25
import torch.multiprocessing as mp
26
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
27

28
import fastfold
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
from fastfold.data import data_pipeline, feature_pipeline, templates
from fastfold.utils import inject_fastnn
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map


def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
Shenggan's avatar
Shenggan committed
75
76


77
78
79
80
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
81
    # init distributed for Dynamic Axial Parallelism
82
    fastfold.distributed.init_dap()
83
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
84
85
86
87
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

88
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
89
    model = model.eval()
90
    model = model.cuda()
Shenggan's avatar
Shenggan committed
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
110
111
112
113
114
115
116
117
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

118
119
120
121
122
123
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
        lines = [l.strip() for l in fp.readlines()]

    tags, seqs = lines[::2], lines[1::2]
    tags = [l[1:] for l in tags]

    for tag, seq in zip(tags, seqs):
147
        batch = [None]
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if (args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)

            alignment_runner = data_pipeline.AlignmentRunner(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
Shenggan's avatar
Shenggan committed
170
            )
171
            alignment_runner.run(fasta_path, local_alignment_dir)
Shenggan's avatar
Shenggan committed
172

173
174
        feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                    alignment_dir=local_alignment_dir)
175

176
177
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
178

179
180
181
182
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
183

184
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
185

186
187
188
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
189

190
        out = result_q.get()
191

192
193
194
195
196
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
197

198
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
199

200
201
202
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
203

204
205
206
207
208
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
209

210
211
212
213
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
214

215
216
217
218
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
219

220
221
222
223
224
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
258
             ./data/params""")
Shenggan's avatar
Shenggan committed
259
260
261
262
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
263
264
265
266
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
267
268
    parser.add_argument('--preset',
                        type=str,
269
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
270
271
272
273
274
275
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
276
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
277
278

    main(args)