train.py 10.1 KB
Newer Older
LuGY's avatar
LuGY committed
1
import os
2
3
4
5
6
7
8
9
10
11
12
13
import random
import torch
import numpy as np
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam

from fastfold.config import model_config
from fastfold.model.hub import AlphaFold, AlphaFoldLRScheduler, AlphaFoldLoss
from fastfold.utils.inject_fastnn import inject_fastnn
from fastfold.data.data_modules import SetupTrainDataset, TrainDataLoader
from fastfold.utils.tensor_utils import tensor_tree_map
LuGY's avatar
LuGY committed
14
15
16
from fastfold.utils.validation_utils import compute_validation_metrics
#import logging
#logging.disable(logging.WARNING)
17
18
19
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')

LuGY's avatar
LuGY committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

def log_loss(loss_breakdown, batch, outputs, train=True):
    loss_info = ''
    for loss_name, loss_value in loss_breakdown.items():
        loss_info += (f' {loss_name}=' + "{:.3f}".format(loss_value))
    with torch.no_grad():
        other_metrics = compute_validation_metrics(
            batch, 
            outputs,
            superimposition_metrics=(not train)
        )
    for loss_name, loss_value in other_metrics.items():
        loss_info += (f' {loss_name}=' + "{:.3f}".format(loss_value))
    return loss_info


36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def main():
    parser = colossalai.get_default_parser()
    parser.add_argument('--from_torch', default=False, action='store_true')
    parser.add_argument(
        "--template_mmcif_dir", type=str,
        help="Directory containing mmCIF files to search for templates"
    )
    parser.add_argument(
        "--max_template_date", type=str,
        help='''Cutoff for all templates. In training mode, templates are also 
                filtered by the release date of the target'''
    )
    parser.add_argument(
        "--train_data_dir", type=str,
        help="Directory containing training mmCIF files"
    )
    parser.add_argument(
        "--train_alignment_dir", type=str,
        help="Directory containing precomputed training alignments"
    )
    parser.add_argument(
        "--train_chain_data_cache_path", type=str, default=None,
    )
    parser.add_argument(
        "--distillation_data_dir", type=str, default=None,
        help="Directory containing training PDB files"
    )
    parser.add_argument(
        "--distillation_alignment_dir", type=str, default=None,
        help="Directory containing precomputed distillation alignments"
    )
    parser.add_argument(
        "--distillation_chain_data_cache_path", type=str, default=None,
    )
    parser.add_argument(
        "--val_data_dir", type=str, default=None,
        help="Directory containing validation mmCIF files"
    )
    parser.add_argument(
        "--val_alignment_dir", type=str, default=None,
        help="Directory containing precomputed validation alignments"
    )
    parser.add_argument(
        "--kalign_binary_path", type=str, default='/usr/bin/kalign',
        help="Path to the kalign binary"
    )
    parser.add_argument(
        "--train_filter_path", type=str, default=None,
        help='''Optional path to a text file containing names of training
                examples to include, one per line. Used to filter the training 
                set'''
    )
    parser.add_argument(
        "--distillation_filter_path", type=str, default=None,
        help="""See --train_filter_path"""
    )
    parser.add_argument(
        "--obsolete_pdbs_file_path", type=str, default=None,
        help="""Path to obsolete.dat file containing list of obsolete PDBs and 
             their replacements."""
    )
    parser.add_argument(
        "--template_release_dates_cache_path", type=str, default=None,
        help="""Output of scripts/generate_mmcif_cache.py run on template mmCIF
                files."""
    )
    parser.add_argument(
        "--train_epoch_len", type=int, default=10000,
        help=(
            "The virtual length of each training epoch. Stochastic filtering "
            "of training data means that training datasets have no "
            "well-defined length. This virtual length affects frequency of "
            "validation & checkpointing (by default, one of each per epoch)."
        )
    )
    parser.add_argument(
        "--_alignment_index_path", type=str, default=None,
        help="Training alignment index. See the README for instructions."
    )
    parser.add_argument(
        "--config_preset", type=str, default="initial_training",
        help=(
            'Config setting. Choose e.g. "initial_training", "finetuning", '
            '"model_1", etc. By default, the actual values in the config are '
            'used.'
        )
    )
    parser.add_argument(
        "--_distillation_structure_index_path", type=str, default=None,
    )
    parser.add_argument(
        "--distillation_alignment_index_path", type=str, default=None,
        help="Distillation alignment index. See the README for instructions."
    )
    parser.add_argument(
        "--seed", type=int, default=42,
        help="Random seed"
    )
LuGY's avatar
LuGY committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    parser.add_argument(
        "--max_epochs", type=int, default=10000,
        help="The Max epochs of train"
    )
    parser.add_argument(
        "--log_interval", type=int, default=1,
        help="The interval steps of logging during training"
    )
    parser.add_argument(
        "--log_path", type=str, default='train_log',
        help="The path of log folder"
    )
    parser.add_argument(
        "--save_ckpt_path", type=str, default=None,
        help="The path where to save checkpoint, None means not save"
    )
    parser.add_argument(
        "--save_ckpt_interval", type=int, default=1,
        help="The interval epochs of save checkpoint"
    )
154
155
156
157
    parser.add_argument(
        "--dap_size", type=int, default=1,
        help="DAP size, recommended as 1 - nproc_per_node"
    )
158
159
160
161
162
163
164

    args = parser.parse_args()
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    if args.from_torch:
165
166
        colossalai.launch_from_torch(config=dict(parallel=dict(tensor=dict(size=args.dap_size)), 
                                                torch_ddp=dict(static_graph=True)))
167
168
    disable_existing_loggers()
    logger = get_dist_logger()
LuGY's avatar
LuGY committed
169
    logger.log_to_file(args.log_path)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    config = model_config(args.config_preset, train=True)
    config.globals.inplace = False
    model = AlphaFold(config)
    model = inject_fastnn(model)


    train_dataset, test_dataset = SetupTrainDataset(
        config=config.data,
        template_mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        train_data_dir=args.train_data_dir,
        train_alignment_dir=args.train_alignment_dir,
        train_chain_data_cache_path=args.train_chain_data_cache_path,
        distillation_data_dir=args.distillation_data_dir,
        distillation_alignment_dir=args.distillation_alignment_dir,
        distillation_chain_data_cache_path=args.distillation_chain_data_cache_path,
        val_data_dir=args.val_data_dir,
        val_alignment_dir=args.val_alignment_dir,
        kalign_binary_path=args.kalign_binary_path,
        # train_mapping_path=args.train_mapping_path,
        # distillation_mapping_path=args.distillation_mapping_path,
        obsolete_pdbs_file_path=args.obsolete_pdbs_file_path,
        template_release_dates_cache_path=args.template_release_dates_cache_path,
        train_epoch_len=args.train_epoch_len, 
        _alignment_index_path=args._alignment_index_path,
    )

    train_dataloader, test_dataloader = TrainDataLoader(
        config=config.data,
        train_dataset=train_dataset,
        test_dataset=test_dataset,
        batch_seed=args.seed,
        )


    criterion = AlphaFoldLoss(config.loss)

    optimizer = HybridAdam(model.parameters(), lr=1e-3, eps=1e-8)

    lr_scheduler = AlphaFoldLRScheduler(optimizer)
    

    engine, train_dataloader, test_dataloader, lr_scheduler = colossalai.initialize(
                                                                model=model,
                                                                optimizer=optimizer,
                                                                criterion=criterion,
                                                                lr_scheduler=lr_scheduler,
                                                                train_dataloader=train_dataloader,
                                                                test_dataloader=test_dataloader,
                                                                )
    
LuGY's avatar
LuGY committed
222
223
224

    logger.info('Start training.', ranks=[0])
    for epoch in range(args.max_epochs):
225
        engine.train()
LuGY's avatar
LuGY committed
226
        for i, batch in enumerate(train_dataloader):
227
228
229
230
231
            batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
            output = engine(batch)
            batch = tensor_tree_map(lambda t: t[..., -1], batch)
            loss, loss_breakdown = engine.criterion(
                    output, batch, _return_breakdown=True)
LuGY's avatar
LuGY committed
232
            if (i+1) % args.log_interval == 0:
233
                logger.info(f'Training, Epoch: {epoch}, Step: {i+1}, Global_Step: {epoch*len(train_dataloader)+i+1},' +
LuGY's avatar
LuGY committed
234
235
                            f' Loss:{log_loss(loss_breakdown, batch, output)}', ranks=[0])
            engine.zero_grad()
236
237
238
239
240
241
            engine.backward(loss)
            engine.step()
        lr_scheduler.step()
        
        if test_dataloader is not None:
            engine.eval()
LuGY's avatar
LuGY committed
242
            for i, batch in enumerate(test_dataloader):
243
244
245
246
                batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
                with torch.no_grad():
                    output = engine(batch)
                    batch = tensor_tree_map(lambda t: t[..., -1], batch)
LuGY's avatar
LuGY committed
247
                    batch["use_clamped_fape"] = 0.
248
249
                    _, loss_breakdown = engine.criterion(
                            output, batch, _return_breakdown=True)
LuGY's avatar
LuGY committed
250
251
252
253
254
                    logger.info(f'Validation, Step: {i+1}, \
                                Loss:{log_loss(loss_breakdown, batch, output, False)}', ranks=[0])
        
        if (args.save_ckpt_path is not None) and ( (epoch+1) % args.save_ckpt_interval == 0):
            torch.save(engine.model, os.path.join(args.save_ckpt_path, 'model.pth')) 
255
256
257
258
        

if __name__ == "__main__":
    main()