train.py 8.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import random
import torch
import numpy as np
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import HybridAdam

from tqdm import tqdm

from fastfold.config import model_config
from fastfold.model.hub import AlphaFold, AlphaFoldLRScheduler, AlphaFoldLoss
from fastfold.utils.inject_fastnn import inject_fastnn
from fastfold.data.data_modules import SetupTrainDataset, TrainDataLoader
from fastfold.utils.tensor_utils import tensor_tree_map

import logging
logging.disable(logging.WARNING)
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')

def main():
    parser = colossalai.get_default_parser()
    parser.add_argument('--from_torch', default=False, action='store_true')
    parser.add_argument(
        "--template_mmcif_dir", type=str,
        help="Directory containing mmCIF files to search for templates"
    )
    parser.add_argument(
        "--max_template_date", type=str,
        help='''Cutoff for all templates. In training mode, templates are also 
                filtered by the release date of the target'''
    )
    parser.add_argument(
        "--train_data_dir", type=str,
        help="Directory containing training mmCIF files"
    )
    parser.add_argument(
        "--train_alignment_dir", type=str,
        help="Directory containing precomputed training alignments"
    )
    parser.add_argument(
        "--train_chain_data_cache_path", type=str, default=None,
    )
    parser.add_argument(
        "--distillation_data_dir", type=str, default=None,
        help="Directory containing training PDB files"
    )
    parser.add_argument(
        "--distillation_alignment_dir", type=str, default=None,
        help="Directory containing precomputed distillation alignments"
    )
    parser.add_argument(
        "--distillation_chain_data_cache_path", type=str, default=None,
    )
    parser.add_argument(
        "--val_data_dir", type=str, default=None,
        help="Directory containing validation mmCIF files"
    )
    parser.add_argument(
        "--val_alignment_dir", type=str, default=None,
        help="Directory containing precomputed validation alignments"
    )
    parser.add_argument(
        "--kalign_binary_path", type=str, default='/usr/bin/kalign',
        help="Path to the kalign binary"
    )
    parser.add_argument(
        "--train_filter_path", type=str, default=None,
        help='''Optional path to a text file containing names of training
                examples to include, one per line. Used to filter the training 
                set'''
    )
    parser.add_argument(
        "--distillation_filter_path", type=str, default=None,
        help="""See --train_filter_path"""
    )
    parser.add_argument(
        "--obsolete_pdbs_file_path", type=str, default=None,
        help="""Path to obsolete.dat file containing list of obsolete PDBs and 
             their replacements."""
    )
    parser.add_argument(
        "--template_release_dates_cache_path", type=str, default=None,
        help="""Output of scripts/generate_mmcif_cache.py run on template mmCIF
                files."""
    )
    parser.add_argument(
        "--train_epoch_len", type=int, default=10000,
        help=(
            "The virtual length of each training epoch. Stochastic filtering "
            "of training data means that training datasets have no "
            "well-defined length. This virtual length affects frequency of "
            "validation & checkpointing (by default, one of each per epoch)."
        )
    )
    parser.add_argument(
        "--_alignment_index_path", type=str, default=None,
        help="Training alignment index. See the README for instructions."
    )
    parser.add_argument(
        "--config_preset", type=str, default="initial_training",
        help=(
            'Config setting. Choose e.g. "initial_training", "finetuning", '
            '"model_1", etc. By default, the actual values in the config are '
            'used.'
        )
    )
    parser.add_argument(
        "--_distillation_structure_index_path", type=str, default=None,
    )
    parser.add_argument(
        "--distillation_alignment_index_path", type=str, default=None,
        help="Distillation alignment index. See the README for instructions."
    )
    parser.add_argument(
        "--seed", type=int, default=42,
        help="Random seed"
    )

    args = parser.parse_args()
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    if args.from_torch:
        colossalai.launch_from_torch(config=dict(torch_ddp=dict(static_graph=True)))
    disable_existing_loggers()
    logger = get_dist_logger()

    config = model_config(args.config_preset, train=True)
    config.globals.inplace = False
    model = AlphaFold(config)
    model = inject_fastnn(model)


    train_dataset, test_dataset = SetupTrainDataset(
        config=config.data,
        template_mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        train_data_dir=args.train_data_dir,
        train_alignment_dir=args.train_alignment_dir,
        train_chain_data_cache_path=args.train_chain_data_cache_path,
        distillation_data_dir=args.distillation_data_dir,
        distillation_alignment_dir=args.distillation_alignment_dir,
        distillation_chain_data_cache_path=args.distillation_chain_data_cache_path,
        val_data_dir=args.val_data_dir,
        val_alignment_dir=args.val_alignment_dir,
        kalign_binary_path=args.kalign_binary_path,
        # train_mapping_path=args.train_mapping_path,
        # distillation_mapping_path=args.distillation_mapping_path,
        obsolete_pdbs_file_path=args.obsolete_pdbs_file_path,
        template_release_dates_cache_path=args.template_release_dates_cache_path,
        train_epoch_len=args.train_epoch_len, 
        _alignment_index_path=args._alignment_index_path,
    )

    train_dataloader, test_dataloader = TrainDataLoader(
        config=config.data,
        train_dataset=train_dataset,
        test_dataset=test_dataset,
        batch_seed=args.seed,
        )


    criterion = AlphaFoldLoss(config.loss)

    optimizer = HybridAdam(model.parameters(), lr=1e-3, eps=1e-8)

    lr_scheduler = AlphaFoldLRScheduler(optimizer)
    

    engine, train_dataloader, test_dataloader, lr_scheduler = colossalai.initialize(
                                                                model=model,
                                                                optimizer=optimizer,
                                                                criterion=criterion,
                                                                lr_scheduler=lr_scheduler,
                                                                train_dataloader=train_dataloader,
                                                                test_dataloader=test_dataloader,
                                                                )
    
    for epoch in range(200):
        engine.train()
        if gpc.get_global_rank() == 0:
            train_dataloader = tqdm(train_dataloader)
        for batch in train_dataloader:
            batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
            engine.zero_grad()
            output = engine(batch)
            batch = tensor_tree_map(lambda t: t[..., -1], batch)
            loss, loss_breakdown = engine.criterion(
                    output, batch, _return_breakdown=True)
            if gpc.get_global_rank() == 0:
                train_dataloader.set_postfix(loss=float(loss))
            engine.backward(loss)
            engine.step()
        lr_scheduler.step()
        
        if test_dataloader is not None:
            engine.eval()
            if gpc.get_global_rank() == 0:
                train_dataloader = tqdm(train_dataloader)
            for batch in test_dataloader:
                batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
                with torch.no_grad():
                    output = engine(batch)
                    batch = tensor_tree_map(lambda t: t[..., -1], batch)
                    _, loss_breakdown = engine.criterion(
                            output, batch, _return_breakdown=True)
                    if gpc.get_global_rank() == 0:
                        train_dataloader.set_postfix(loss=float(loss))
        


if __name__ == "__main__":
    main()