integrated_conv_test.py 4.11 KB
Newer Older
Daniel Povey's avatar
Daniel Povey committed
1
import random
Daniel Povey's avatar
Daniel Povey committed
2
3
4
5
6
7
8
9
10
11
import torch
from torch_integrated_conv import integrated_conv


def test_integrated_conv_zeros():
    N = 1
    C = 2
    H = 3
    W = 4
    for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
Daniel Povey's avatar
Daniel Povey committed
12
13
14
        if device == torch.device('cuda:0') and not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            continue
Daniel Povey's avatar
Daniel Povey committed
15
16
17
18
19
20
21
        for dtype in [torch.float32, torch.float64]:
            print("device=", device, ", dtype=", dtype)
            input = torch.zeros(N, 2 * C, H, W, device=device, dtype=dtype)
            kH = 5
            kW = 5
            pos_add = torch.zeros(C, kH, kW, device=device, dtype=dtype)
            pos_mul = torch.zeros(C, kH, kW, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
22
23
24
            input.requires_grad = True
            pos_add.requires_grad = True
            pos_mul.requires_grad = True
Daniel Povey's avatar
Daniel Povey committed
25

Daniel Povey's avatar
Daniel Povey committed
26
            output_ref = torch.zeros(N, C, H, W, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
27
            output = integrated_conv(input, pos_add, pos_mul)
Daniel Povey's avatar
Daniel Povey committed
28
            assert torch.allclose(output, output_ref)
Daniel Povey's avatar
Daniel Povey committed
29

Daniel Povey's avatar
Daniel Povey committed
30
31
32
33
34
            output.sum().backward()
            print("input_grad=", input.grad)
            print("pos_add_grad=", pos_add.grad)
            print("pos_mul_grad=", pos_mul.grad)

Daniel Povey's avatar
Daniel Povey committed
35
36
37
38
39
40
41
42
43
44
45

def test_integrated_conv_compare():
    N = 1
    C = 2
    H = 3
    W = 4
    if not torch.cuda.is_available():
        print("Warning: torch not available, not testing this part.")
        return
    for dtype in [torch.float32, torch.float64]:
        print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
46
        input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
47
48
49
50
51
        device = torch.device('cuda:0')
        input_cuda = input.to(device)

        kH = 5
        kW = 5
Daniel Povey's avatar
Daniel Povey committed
52
53
54
        pos_add = torch.randn(C, kH, kW, dtype=dtype)
        pos_mul = torch.randn(C, kH, kW, dtype=dtype)

Daniel Povey's avatar
Daniel Povey committed
55
56
57
58
59
60
61
        pos_add_cuda = pos_add.to(device)
        pos_mul_cuda = pos_mul.to(device)

        output = integrated_conv(input, pos_add, pos_mul)
        output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
        print("output = ", output)
        print("output_cuda = ", output_cuda)
Daniel Povey's avatar
Daniel Povey committed
62
63
64
65
66
        diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
        abs = output.abs().sum()
        print("Diff = ", diff, ", abs = ", abs)
        assert torch.allclose(output, output_cuda.to(torch.device('cpu')),
                              atol=1.0e-05)
Daniel Povey's avatar
Daniel Povey committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


def test_integrated_conv_rand_compare():
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2


        if not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            return
        for dtype in [torch.float32, torch.float64]:
            print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
92
            input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
93
94
95
96
97
98
99
100
101
            device = torch.device('cuda:0')
            input_cuda = input.to(device)

            kH = random.randint(1, 10)
            kW = random.randint(1, 10)
            if kH % 2 == 0:
                kH += 1
            if kW % 2 == 0:
                kW += 1
Daniel Povey's avatar
Daniel Povey committed
102
103
            pos_add = torch.randn(C, kH, kW, dtype=dtype)
            pos_mul = torch.randn(C, kH, kW, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
104
105
106
107
108
            pos_add_cuda = pos_add.to(device)
            pos_mul_cuda = pos_mul.to(device)

            output = integrated_conv(input, pos_add, pos_mul)
            output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
Daniel Povey's avatar
Daniel Povey committed
109
110
111
112
113
114
115
116
117
118

            diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
            abs = output.abs().sum()
            print("Diff = ", diff, ", abs = ", abs)

            if not torch.allclose(output, output_cuda.to(torch.device('cpu')),
                                  atol=1.0e-05):
                print("output = ", output)
                print("output_cuda = ", output_cuda)
                assert 0, "outputs differ"