integrated_conv_test.py 3.35 KB
Newer Older
Daniel Povey's avatar
Daniel Povey committed
1
import random
Daniel Povey's avatar
Daniel Povey committed
2
3
4
5
6
7
8
9
10
11
import torch
from torch_integrated_conv import integrated_conv


def test_integrated_conv_zeros():
    N = 1
    C = 2
    H = 3
    W = 4
    for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
Daniel Povey's avatar
Daniel Povey committed
12
13
14
        if device == torch.device('cuda:0') and not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            continue
Daniel Povey's avatar
Daniel Povey committed
15
16
17
18
19
20
21
22
        for dtype in [torch.float32, torch.float64]:
            print("device=", device, ", dtype=", dtype)
            input = torch.zeros(N, 2 * C, H, W, device=device, dtype=dtype)
            kH = 5
            kW = 5
            pos_add = torch.zeros(C, kH, kW, device=device, dtype=dtype)
            pos_mul = torch.zeros(C, kH, kW, device=device, dtype=dtype)

Daniel Povey's avatar
Daniel Povey committed
23
            output_ref = torch.zeros(N, C, H, W, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
24
            output = integrated_conv(input, pos_add, pos_mul)
Daniel Povey's avatar
Daniel Povey committed
25
            assert torch.allclose(output, output_ref)
Daniel Povey's avatar
Daniel Povey committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98


def test_integrated_conv_compare():
    N = 1
    C = 2
    H = 3
    W = 4
    if not torch.cuda.is_available():
        print("Warning: torch not available, not testing this part.")
        return
    for dtype in [torch.float32, torch.float64]:
        print("dtype=", dtype)
        input = torch.ones(N, 2 * C, H, W, dtype=dtype)
        device = torch.device('cuda:0')
        input_cuda = input.to(device)

        kH = 5
        kW = 5
        pos_add = torch.ones(C, kH, kW, dtype=dtype)
        pos_mul = torch.ones(C, kH, kW, dtype=dtype)
        pos_add_cuda = pos_add.to(device)
        pos_mul_cuda = pos_mul.to(device)

        output = integrated_conv(input, pos_add, pos_mul)
        output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
        print("output = ", output)
        print("output_cuda = ", output_cuda)
        assert torch.allclose(output, output_cuda.to(torch.device('cpu')))


def test_integrated_conv_rand_compare():
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2


        if not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            return
        for dtype in [torch.float32, torch.float64]:
            print("dtype=", dtype)
            input = torch.ones(N, 2 * C, H, W, dtype=dtype)
            device = torch.device('cuda:0')
            input_cuda = input.to(device)

            kH = random.randint(1, 10)
            kW = random.randint(1, 10)
            if kH % 2 == 0:
                kH += 1
            if kW % 2 == 0:
                kW += 1
            pos_add = torch.ones(C, kH, kW, dtype=dtype)
            pos_mul = torch.ones(C, kH, kW, dtype=dtype)
            pos_add_cuda = pos_add.to(device)
            pos_mul_cuda = pos_mul.to(device)

            output = integrated_conv(input, pos_add, pos_mul)
            output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
            print("output = ", output)
            print("output_cuda = ", output_cuda)
            assert torch.allclose(output, output_cuda.to(torch.device('cpu')))