learned_nonlin_cpu.cpp 8.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <torch/extension.h>



// forward of learned_nonlin.  See """... """ comment of `learned_nonlin` in
// learned_nonlin.py for documentation of the behavior of this function.
torch::Tensor learned_nonlin_cpu(torch::Tensor input,
                                 torch::Tensor params) {
  TORCH_CHECK(input.dim() == 3, "input must be 3-dimensional");
  TORCH_CHECK(params.dim() == 2, "params must be 2-dimensional.");
  TORCH_CHECK(params.size(1) >= 3 &&
              ((params.size(1) - 1) & (params.size(1) - 2)) == 0,
              "params.size(1) has invalid value, must be a power of 2 plus 1.");
  TORCH_CHECK(params.size(0) == input.size(1),
              "params vs input channels mismatch");

  TORCH_CHECK(input.device().is_cpu(), "Input must be a CPU tensor");
  TORCH_CHECK(params.device().is_cpu(), "Params must be a CPU tensor");

  const int B = input.size(0),
      C = input.size(1),
      T = input.size(2),
      N = params.size(1) - 1,
      K = N / 2;

  auto scalar_t = input.scalar_type();
  auto opts = torch::TensorOptions().dtype(scalar_t).device(input.device());

  torch::Tensor y_vals = torch::empty({C, N}, opts),
    output = torch::empty({B, C, T}, opts);

  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "learned_nonlin_cpu_loop", ([&] {
        auto params_a = params.accessor<scalar_t, 2>(),
            y_vals_a = y_vals.accessor<scalar_t, 2>();
        for (int c = 0; c < C; c++) {
          scalar_t sum_negative = 0.0,
37
38
              sum_positive = 0.0,
              scale = exp(params_a[c][0]);
39
          for (int i = 0; i < K; i++) {
40
41
42
43
44
45
            scalar_t pos_scaled_param = params_a[c][1 + K + i] * scale,
                neg_scaled_param = params_a[c][K - i] * scale;
            y_vals_a[c][K + i] = sum_positive - pos_scaled_param * i;
            sum_positive += pos_scaled_param;
            sum_negative -= neg_scaled_param;
            y_vals_a[c][K - i - 1] = sum_negative + neg_scaled_param * (i + 1);
46
47
48
49
50
51
52
53
          }
        }

        auto input_a = input.accessor<scalar_t, 3>(),
            output_a = output.accessor<scalar_t, 3>();

        for (int b = 0; b < B; b++) {
          for (int c = 0; c < C; c++) {
54
55
            scalar_t scale = exp(params_a[c][0]),
                inv_scale = 1.0 / scale;
56
57
58
59
60
61
            for (int t = 0; t < T; t++) {
              // `x` is the scaled input x plus an offset so that -K maps to 0.
              //  Note: the discontinuities in our function are at -(K-1) ... +(K+1),
              // so in a sense -K and +K are not special, but we include those
              // extra values as an easy way to handle the semi-infinite regions
              // that are < -(K-1) and > (K-1)
62
63
64
65
              scalar_t input = input_a[b][c][t],
                  x = input * inv_scale + K;
              if (x < 0) x = 0;
              else if (x >= N) x = N - 1;
66
              // C++ rounds toward zero.
67
              int n = (int) x;
68
              // OK, at this point, 0 <= min < 2*K.
69
              output_a[b][c][t] = input * params_a[c][n + 1] + y_vals_a[c][n];
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            }
          }
        }}));
  return output;
}


// backward of learned_nonlin.  Returns (input_grad, params_grad)

std::vector<torch::Tensor> learned_nonlin_backward_cpu(torch::Tensor input,
                                                       torch::Tensor params,
                                                       torch::Tensor output_grad) {
  TORCH_CHECK(input.dim() == 3, "input must be 3-dimensional");
  TORCH_CHECK(params.dim() == 2, "params must be 2-dimensional.");
  TORCH_CHECK(params.size(1) >= 3 &&
              ((params.size(1) - 1) & (params.size(1) - 2)) == 0,
              "params.size(1) has invalid value, must be a power of 2 plus 1.");
  TORCH_CHECK(params.size(0) == input.size(1),
              "params vs input channels mismatch");
  TORCH_CHECK(input.sizes() == output_grad.sizes(),
              "Output-grad vs. input sizes mismatch.");

  TORCH_CHECK(input.device().is_cpu(), "Input must be a CPU tensor");
  TORCH_CHECK(params.device().is_cpu(), "Params must be a CPU tensor");
  TORCH_CHECK(output_grad.device().is_cpu(), "Output-grad must be a CPU tensor");

  const int B = input.size(0),
      C = input.size(1),
      T = input.size(2),
      N = params.size(1) - 1,
      K = N / 2;

  auto scalar_t = input.scalar_type();
  auto opts = torch::TensorOptions().dtype(scalar_t).device(input.device());

  torch::Tensor y_vals = torch::empty({C, N}, opts),
      y_vals_grad = torch::zeros({C, N}, opts),
      params_grad = torch::zeros({C, N + 1}, opts),
      input_grad = torch::zeros({B, C, T}, opts);

  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "learned_nonlin_backward_cpu_loop", ([&] {
        auto params_a = params.accessor<scalar_t, 2>(),
Daniel Povey's avatar
Daniel Povey committed
112
            params_grad_a = params_grad.accessor<scalar_t, 2>(),
113
            y_vals_a = y_vals.accessor<scalar_t, 2>(),
Daniel Povey's avatar
Daniel Povey committed
114
            y_vals_grad_a = y_vals_grad.accessor<scalar_t, 2>();
115
116
        for (int c = 0; c < C; c++) {
          scalar_t sum_negative = 0.0,
117
118
              sum_positive = 0.0,
              scale = exp(params_a[c][0]);
119
          for (int i = 0; i < K; i++) {
120
121
122
123
124
125
            scalar_t pos_scaled_param = params_a[c][1 + K + i] * scale,
                neg_scaled_param = params_a[c][K - i] * scale;
            y_vals_a[c][K + i] = sum_positive - pos_scaled_param * i;
            sum_positive += pos_scaled_param;
            sum_negative -= neg_scaled_param;
            y_vals_a[c][K - i - 1] = sum_negative + neg_scaled_param * (i + 1);
126
127
128
129
130
131
132
133
          }
        }
        auto input_a = input.accessor<scalar_t, 3>(),
            output_grad_a = output_grad.accessor<scalar_t, 3>(),
            input_grad_a = input_grad.accessor<scalar_t, 3>();

        for (int b = 0; b < B; b++) {
          for (int c = 0; c < C; c++) {
134
            scalar_t inv_scale = exp(-params_a[c][0]);
135
            for (int t = 0; t < T; t++) {
Daniel Povey's avatar
Daniel Povey committed
136
137
              scalar_t input = input_a[b][c][t],
                  x = input * inv_scale + K,
138
139
140
                  output_grad = output_grad_a[b][c][t];
              if (x < 0) x = 0;
              else if (x >= N) x = N - 1;
141
              // C++ rounds toward zero.
142
              int n = (int) x;
143
              // OK, at this point, 0 <= n < 2*K.
Daniel Povey's avatar
Daniel Povey committed
144
              // backprop for:
145
146
147
148
              // output_a[b][c][t] = input * params_a[c][n + 1] + y_vals_a[c][n];
              params_grad_a[c][n + 1] += output_grad * input;
              y_vals_grad_a[c][n] += output_grad;
              input_grad_a[b][c][t] = output_grad * params_a[c][n + 1];
149
150
            }
          }
Daniel Povey's avatar
Daniel Povey committed
151
152
153
        }
        // Now do the backprop for the loop above where we set y_vals_a.
        for (int c = 0; c < C; c++) {
154
155
          scalar_t scale = exp(params_a[c][0]),
              scale_grad = 0.0,
156
              sum_negative_grad = 0.0,
Daniel Povey's avatar
Daniel Povey committed
157
158
              sum_positive_grad = 0.0;
          for (int i = K - 1; i >= 0; i--) {
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            // Backprop for: y_vals_a[c][K - i - 1] = sum_negative + neg_scaled_param * (i + 1):
            scalar_t y_grad_neg = y_vals_grad_a[c][K - i - 1];
            sum_negative_grad += y_grad_neg;
            scalar_t neg_scaled_param_grad = y_grad_neg * (i + 1);
            // Backprop for: sum_negative -= neg_scaled_param;
            neg_scaled_param_grad -= sum_negative_grad;
            // Backprop for: sum_positive += pos_scaled_param;
            scalar_t pos_scaled_param_grad = sum_positive_grad;
            // Backprop for: y_vals_a[c][K + i] = sum_positive - pos_scaled_param * i;
            scalar_t y_grad_pos = y_vals_grad_a[c][K + i];
            pos_scaled_param_grad -= i * y_grad_pos;
            sum_positive_grad += y_grad_pos;
            // Backprop for: pos_scaled_param = params_a[c][1 + K + i] * scale,
            //        and:  neg_scaled_param = params_a[c][K - i] * scale;
            params_grad_a[c][1 + K + i] += pos_scaled_param_grad * scale;
            params_grad_a[c][K - i] += neg_scaled_param_grad * scale;
            scale_grad += (pos_scaled_param_grad * params_a[c][1 + K + i] +
                           neg_scaled_param_grad * params_a[c][K - i]);
Daniel Povey's avatar
Daniel Povey committed
177
          }
178
179
          // Backprop for: scale = exp(params_a[c][0]),
          params_grad_a[c][0] += scale * scale_grad;
Daniel Povey's avatar
Daniel Povey committed
180
181
182
        }
      }));
  return std::vector<torch::Tensor>({input_grad, params_grad});
183
184
185
186
187
188
189
190
191
}




PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("learned_nonlin_cpu", &learned_nonlin_cpu, "Integrated convolution forward function (CPU)");
  m.def("learned_nonlin_backward_cpu", &learned_nonlin_backward_cpu, "Integrated convolution backward function (CPU)");
}