learned_nonlin_cpu.cpp 7.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include <torch/extension.h>



// forward of learned_nonlin.  See """... """ comment of `learned_nonlin` in
// learned_nonlin.py for documentation of the behavior of this function.
torch::Tensor learned_nonlin_cpu(torch::Tensor input,
                                 torch::Tensor params) {
  TORCH_CHECK(input.dim() == 3, "input must be 3-dimensional");
  TORCH_CHECK(params.dim() == 2, "params must be 2-dimensional.");
  TORCH_CHECK(params.size(1) >= 3 &&
              ((params.size(1) - 1) & (params.size(1) - 2)) == 0,
              "params.size(1) has invalid value, must be a power of 2 plus 1.");
  TORCH_CHECK(params.size(0) == input.size(1),
              "params vs input channels mismatch");

  TORCH_CHECK(input.device().is_cpu(), "Input must be a CPU tensor");
  TORCH_CHECK(params.device().is_cpu(), "Params must be a CPU tensor");

  const int B = input.size(0),
      C = input.size(1),
      T = input.size(2),
      N = params.size(1) - 1,
      K = N / 2;

  auto scalar_t = input.scalar_type();
  auto opts = torch::TensorOptions().dtype(scalar_t).device(input.device());

  torch::Tensor y_vals = torch::empty({C, N}, opts),
    output = torch::empty({B, C, T}, opts);

  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "learned_nonlin_cpu_loop", ([&] {
        auto params_a = params.accessor<scalar_t, 2>(),
            y_vals_a = y_vals.accessor<scalar_t, 2>();
        for (int c = 0; c < C; c++) {
          scalar_t sum_negative = 0.0,
              sum_positive = 0.0;
          for (int i = 0; i < K; i++) {
            y_vals_a[c][K + i] = sum_positive;
            y_vals_a[c][K - i] = sum_negative;
            sum_positive += params_a[c][1 + K + i];
            sum_negative -= params_a[c][K - i];
          }
          // the reference point for the lowest, half-infinite interval (the one
          // starting at x=-(K-1) is still x=-(K-1); this value is repeated in y_vals.
          y_vals_a[c][0] = y_vals_a[c][1];
        }

        auto input_a = input.accessor<scalar_t, 3>(),
            output_a = output.accessor<scalar_t, 3>();

        for (int b = 0; b < B; b++) {
          for (int c = 0; c < C; c++) {
            scalar_t l = params_a[c][0],
                scale = exp(l),
                inv_scale = 1.0 / scale;
            for (int t = 0; t < T; t++) {
              // `x` is the scaled input x plus an offset so that -K maps to 0.
              //  Note: the discontinuities in our function are at -(K-1) ... +(K+1),
              // so in a sense -K and +K are not special, but we include those
              // extra values as an easy way to handle the semi-infinite regions
              // that are < -(K-1) and > (K-1)
              scalar_t x = input_a[b][c][t] * inv_scale + K,
                  y;
              int min = 0, diff = K;
              while (diff > 0) {
                int mid = min + diff;
                if (x >= mid)
                  min = mid;
                diff = diff >> 1;
              }
              // OK, at this point, 0 <= min < 2*K.
              y = (x - (scalar_t)min) * params_a[c][min + 1] + y_vals_a[c][min];
              // printf("x = %f, y = %f, min = %d; y = (%f - %d) * %f+ %f\n", x, y, min,
              // x, min, params_a[c][min + 1], y_vals_a[c][min - 1]);
              output_a[b][c][t] = y * scale;
            }
          }
        }}));
  return output;
}


// backward of learned_nonlin.  Returns (input_grad, params_grad)

std::vector<torch::Tensor> learned_nonlin_backward_cpu(torch::Tensor input,
                                                       torch::Tensor params,
                                                       torch::Tensor output_grad) {
  TORCH_CHECK(input.dim() == 3, "input must be 3-dimensional");
  TORCH_CHECK(params.dim() == 2, "params must be 2-dimensional.");
  TORCH_CHECK(params.size(1) >= 3 &&
              ((params.size(1) - 1) & (params.size(1) - 2)) == 0,
              "params.size(1) has invalid value, must be a power of 2 plus 1.");
  TORCH_CHECK(params.size(0) == input.size(1),
              "params vs input channels mismatch");
  TORCH_CHECK(input.sizes() == output_grad.sizes(),
              "Output-grad vs. input sizes mismatch.");

  TORCH_CHECK(input.device().is_cpu(), "Input must be a CPU tensor");
  TORCH_CHECK(params.device().is_cpu(), "Params must be a CPU tensor");
  TORCH_CHECK(output_grad.device().is_cpu(), "Output-grad must be a CPU tensor");

  const int B = input.size(0),
      C = input.size(1),
      T = input.size(2),
      N = params.size(1) - 1,
      K = N / 2;

  auto scalar_t = input.scalar_type();
  auto opts = torch::TensorOptions().dtype(scalar_t).device(input.device());

  torch::Tensor y_vals = torch::empty({C, N}, opts),
      y_vals_grad = torch::zeros({C, N}, opts),
      params_grad = torch::zeros({C, N + 1}, opts),
      input_grad = torch::zeros({B, C, T}, opts);

  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "learned_nonlin_backward_cpu_loop", ([&] {
        auto params_a = params.accessor<scalar_t, 2>(),
            params_grad_a = params.accessor<scalar_t, 2>(),
            y_vals_a = y_vals.accessor<scalar_t, 2>(),
            y_vals_grad_a = y_vals.accessor<scalar_t, 2>();
        for (int c = 0; c < C; c++) {
          scalar_t sum_negative = 0.0,
              sum_positive = 0.0;
          for (int i = 0; i < K; i++) {
            y_vals_a[c][K - 1 + i] = sum_positive;
            y_vals_a[c][K - 1 - i] = sum_negative;
            sum_positive += params_a[c][1 + K + i];
            sum_negative -= params_a[c][K - i];
          }
        }

        auto input_a = input.accessor<scalar_t, 3>(),
            output_grad_a = output_grad.accessor<scalar_t, 3>(),
            input_grad_a = input_grad.accessor<scalar_t, 3>();

        for (int b = 0; b < B; b++) {
          for (int c = 0; c < C; c++) {
            scalar_t l = params_a[c][0],
                scale = exp(l),
                inv_scale = 1.0 / scale,
                scale_grad = 0.0,
                inv_scale_grad = 0.0;
            for (int t = 0; t < T; t++) {
              // `x` is the scaled input x plus an offset so that -K maps to 0.
              //  Note: the discontinuities in our function are at -(K-1) ... +(K+1),
              // so in a sense -K and +K are not special, but we include those
              // extra values as an easy way to handle the semi-infinite regions
              // that are < -(K-1) and > (K-1)
              scalar_t x = input_a[b][c][t] * inv_scale + K,
                  output_grad = output_grad_a[b][c][t],
                  x_grad,
                  y;
              int min = 0, diff = K;
              while (diff > 0) {
                int mid = min + diff;
                if (x >= mid)
                  min = mid;
                diff = diff >> 1;
              }
              // OK, at this point, 0 <= min < 2*K.
              // The "+ 1" is to get (input_a[b][c][t] * inv_scale) - (-(K+1))
              if (min == 0) {
                y = (x + 1) * params_a[c][1] +  y_vals_a[c][0];
                // output_a[b][c][t] = y * scale;
                scale_grad += y * output_grad;
                scalar_t y_grad = scale * output_grad;
                x_grad = y_grad * params_a[c][1];
                //y_vals_grad_a[c][0] +=
              } else {
                y = (x - (scalar_t)min) * params_a[c][min + 1] + y_vals_a[c][min - 1];
                // printf("x = %f, y = %f, min = %d; y = (%f - %d) * %f+ %f\n", x, y, min,
                // x, min, params_a[c][min + 1], y_vals_a[c][min - 1]);

              }
              //output_a[b][c][t] = y * scale;
            }
          }
        }}));
  //return output;
  //return std::vector<torch::Tensor>({grad_input, grad_pos_add, grad_pos_mul});
}




PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("learned_nonlin_cpu", &learned_nonlin_cpu, "Integrated convolution forward function (CPU)");
  m.def("learned_nonlin_backward_cpu", &learned_nonlin_backward_cpu, "Integrated convolution backward function (CPU)");
}