- 03 Oct, 2018 1 commit
-
-
Liezl Puzon authored
Summary: This generalizes BacktranslationDataset to allow us to use any SequenceGenerator class. For example, if we want to use this model in PyTorch Translate, we can pass the following to BacktraanslationDataset init: (1) a PyTorch Translate SequenceGenerator class as generator_class and (2) the appropriate args for initializing that class as kwargs. Reviewed By: xianxl Differential Revision: D10156552 fbshipit-source-id: 0495d825bf4727da96d0d9a40dc434135ff3486c
-
- 02 Oct, 2018 1 commit
-
-
Liezl Puzon authored
Summary: Using argparse Namespace hides the actual args that are expected and makes code harder to read. Note the difference in style for the args list def __init__( self, tgt_dataset, tgt_dict, backtranslation_model, unkpen, sampling, beam, max_len_a, max_len_b, ): instead of def __init__( self, tgt_dataset, tgt_dict, backtranslation_model, unkpen, sampling, beam, max_len_a, max_len_b, ): Reviewed By: dpacgopinath Differential Revision: D10152331 fbshipit-source-id: 6539ccba09d48acf23759996b7e32fb329b3e3f6
-
- 30 Sep, 2018 1 commit
-
-
myleott authored
-
- 25 Sep, 2018 8 commits
-
-
Myle Ott authored
Co-authored-by:liezl200 <lie@fb.com>
-
Alexei Baevski authored
-
Myle Ott authored
-
Myle Ott authored
-
Stephen Roller authored
-
Myle Ott authored
-
Myle Ott authored
-
Stephen Roller authored
-
- 03 Sep, 2018 9 commits
- 25 Jul, 2018 1 commit
-
-
Myle Ott authored
-
- 25 Jun, 2018 2 commits
- 24 Jun, 2018 1 commit
-
-
Myle Ott authored
-
- 21 Jun, 2018 2 commits
- 15 Jun, 2018 11 commits
-
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
A Task defines the data format, stores shared state (e.g., dictionaries) and provides helpers for building the model/criterion and calculating the loss. Changes: - Add TranslationTask and LanguageModelingTask. New tasks can be registered with @register_task decorator. - Add EpochBatchIterator to encapsulate batching and saving/restoring dataloader position - Remove LEFT_PAD_* constants and make them configurable per task
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
alexeib authored
-
alexeib authored
-
alexeib authored
This implements convolutional language model from https://arxiv.org/pdf/1612.08083.pdf There are 3 modes for constructing batches: - token block: fill each sample with a specified number of tokens without regard for sentence delimiters - this is what was used for training in the paper - complete: fill each sample with a specified number of tokens but make sure it contains only complete sentences (i.e. if next sentence goes over token block limit, move it to the next sample) - this was used for evaluation in the paper - eos: one sentence per sample (skip blank lines) some results: GCNN-13 - GBW - 37.46 GCNN-14B - GBW - 33.88 GCNN-8 - Wiki103 - 43.76 GCNN-14 - Wiki103 - 35.66 train: python train.py /private/home/abaevski/data/wiki103 --save-dir /tmp --fp16 --max-epoch 35 --save-interval 1 --save-interval-updates 1000 --keep-interval-updates 25 --arch fconv_lm --optimizer nag --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 --decoder-embed-dim 280 --decoder-layers '[(850, 6)] * 3 + [(850,1)] + [(850,5)] * 4 + [(850,1)] + [(850,4)] * 3 + [(1024,4)] + [(2048, 4)]' --clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion cross_entropy --max-tokens 1024 --max-target-positions 1024 --seed 1 --log-format json --log-interval 500 eval: python eval_lm.py ~abaevski/data/wiki103 --path '/checkpoint02/abaevski/2018-04-27/lm_wiki.fp16.mxup300000.fconv.adam.lrs=reduce_lr_on_plateau.emb280.layers(850,6)*3+(850,1)+(850,5)*4+(850,1)+(850,4)*3+(1024,1)+(2048,4).lr0.0005.clp0.1.drp0.3.wd0.0.crt=cross_entropy.mxtk2048.smptk256.seed1.ngpu8/checkpoint_last.pt'
-
Myle Ott authored
-
Myle Ott authored
-
- 24 May, 2018 1 commit
-
-
Myle Ott authored
-
- 02 Apr, 2018 1 commit
-
-
Myle Ott authored
Changes: - 7d19e36: Add `--sampling` flag to generate.py to sample instead of doing beam search - c777340: Add `scripts/average_checkpoints.py` to average multiple checkpoints into a combined model - 3ea882c: Add `--max-update` option to train.py to stop training after a given number of updates - small bugfixes for distributed training, LSTM, inverse square root LR scheduler
-
- 05 Mar, 2018 1 commit
-
-
Myle Ott authored
-