"vscode:/vscode.git/clone" did not exist on "6ab8a96f5b1f9d27285875e4aaeb6b175ddd3808"
- 01 Nov, 2018 1 commit
-
-
Myle Ott authored
Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/336 Differential Revision: D12876709 Pulled By: myleott fbshipit-source-id: a31536e2eb93f752600b9940c28e9b9fcefc8b86
-
- 27 Oct, 2018 1 commit
-
-
Xian Li authored
Summary: We'd like to resue the noising functions and DenoisingDataset in adversarial training. However, current noising functions assume the input are subword tokens. The goal of this diff is to extend it so the noising can be applied to word tokens. Since we're mostly interested in the word shuffle noising, so I only modified the WordShuffle class. Reviewed By: liezl200 Differential Revision: D10523177 fbshipit-source-id: 1e5d27362850675010e73cd38850c890d42652ab
-
- 23 Oct, 2018 1 commit
-
-
Deepak Gopinath authored
Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/325 RoundRobinZipDataset requires size(index) method implemented in every dataset used. Also added missing return statements in a few methods. Reviewed By: liezl200 Differential Revision: D10457159 fbshipit-source-id: 01856eb455f2f3a21e7fb723129ff35fbe29e0ae
-
- 06 Oct, 2018 2 commits
-
-
Liezl Puzon authored
Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/306 This uses a source dataset to generate a batch of {source: noisy source, target: original clean source} which allows us to train a denoising autoencoding component as part of a seq2seq model. Reviewed By: xianxl Differential Revision: D10078981 fbshipit-source-id: 026225984d4a97062ac05dc3a36e79b5c841fe9c
-
Liezl Puzon authored
Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/305 Previously, noising code assumed that every sentence had an EOS which had to be excluded from noising operations (since we shouldn't drop, blank, or shuffle EOS). This logic allows the noising module to handle sentences with EOS and without EOS Reviewed By: xianxl Differential Revision: D10114425 fbshipit-source-id: 04ec8547343eb94266bda1ac7fca3d8a1991c9f4
-
- 04 Oct, 2018 1 commit
-
-
Liezl Puzon authored
Summary: If we want our parallel data to have EOS at the end of source, we keep the EOS at the end of the generated source dialect backtranslation. If we don't want our parallel data to have EOS at the end of source, we **remove** the EOS at the end of the generated source dialect backtranslation. Note: we always want EOS at the end of our target / reference in parallel data so our model can learn to generate a sentence at any arbitrary length. So we make sure that the original target has an EOS before returning a batch of {generated src, original target}. If our original targets in tgt dataset doesn't have an EOS, we append EOS to each tgt sample before collating. We only do this for the purpose of collating a {generated src, original tgt} batch AFTER generating the backtranslations. We don't enforce any EOS before passing tgt to the tgt->src model for generating the backtranslation. The users of this dataset is expected to format tgt dataset examples in the correct format that the tgt->src model expects. Reviewed By: jmp84 Differential Revision: D10157725 fbshipit-source-id: eb6a15f13c651f7c435b8db28103c9a8189845fb
-
- 03 Oct, 2018 2 commits
-
-
Myle Ott authored
Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/302 Differential Revision: D10174608 Pulled By: myleott fbshipit-source-id: 4e2dfc76eae97afc5488f29b47e74f9897a643ff
-
Liezl Puzon authored
Summary: This generalizes BacktranslationDataset to allow us to use any SequenceGenerator class. For example, if we want to use this model in PyTorch Translate, we can pass the following to BacktraanslationDataset init: (1) a PyTorch Translate SequenceGenerator class as generator_class and (2) the appropriate args for initializing that class as kwargs. Reviewed By: xianxl Differential Revision: D10156552 fbshipit-source-id: 0495d825bf4727da96d0d9a40dc434135ff3486c
-
- 02 Oct, 2018 1 commit
-
-
Liezl Puzon authored
Summary: Using argparse Namespace hides the actual args that are expected and makes code harder to read. Note the difference in style for the args list def __init__( self, tgt_dataset, tgt_dict, backtranslation_model, unkpen, sampling, beam, max_len_a, max_len_b, ): instead of def __init__( self, tgt_dataset, tgt_dict, backtranslation_model, unkpen, sampling, beam, max_len_a, max_len_b, ): Reviewed By: dpacgopinath Differential Revision: D10152331 fbshipit-source-id: 6539ccba09d48acf23759996b7e32fb329b3e3f6
-
- 30 Sep, 2018 1 commit
-
-
myleott authored
-
- 25 Sep, 2018 8 commits
-
-
Myle Ott authored
Co-authored-by:liezl200 <lie@fb.com>
-
Alexei Baevski authored
-
Myle Ott authored
-
Myle Ott authored
-
Stephen Roller authored
-
Myle Ott authored
-
Myle Ott authored
-
Stephen Roller authored
-
- 03 Sep, 2018 9 commits
- 25 Jul, 2018 1 commit
-
-
Myle Ott authored
-
- 25 Jun, 2018 2 commits
- 24 Jun, 2018 1 commit
-
-
Myle Ott authored
-
- 21 Jun, 2018 2 commits
- 15 Jun, 2018 7 commits
-
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
A Task defines the data format, stores shared state (e.g., dictionaries) and provides helpers for building the model/criterion and calculating the loss. Changes: - Add TranslationTask and LanguageModelingTask. New tasks can be registered with @register_task decorator. - Add EpochBatchIterator to encapsulate batching and saving/restoring dataloader position - Remove LEFT_PAD_* constants and make them configurable per task
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
alexeib authored
-