README.md 7.51 KB
Newer Older
Sergey Edunov's avatar
Sergey Edunov committed
1
2
# Introduction

Myle Ott's avatar
Myle Ott committed
3
4
5
6
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks. It provides reference implementations
of various sequence-to-sequence models, including:
Myle Ott's avatar
Myle Ott committed
7
- **Convolutional Neural Networks (CNN)**
Myle Ott's avatar
Myle Ott committed
8
  - [Dauphin et al. (2017): Language Modeling with Gated Convolutional Networks](https://arxiv.org/abs/1612.08083)
Myle Ott's avatar
Myle Ott committed
9
  - [Gehring et al. (2017): Convolutional Sequence to Sequence Learning](https://arxiv.org/abs/1705.03122)
Myle Ott's avatar
Myle Ott committed
10
11
  - **_New_** [Edunov et al. (2018): Classical Structured Prediction Losses for Sequence to Sequence Learning](https://arxiv.org/abs/1711.04956)
  - **_New_** [Fan et al. (2018): Hierarchical Neural Story Generation](https://arxiv.org/abs/1805.04833)
Myle Ott's avatar
Myle Ott committed
12
13
14
- **Long Short-Term Memory (LSTM) networks**
  - [Luong et al. (2015): Effective Approaches to Attention-based Neural Machine Translation](https://arxiv.org/abs/1508.04025)
  - [Wiseman and Rush (2016): Sequence-to-Sequence Learning as Beam-Search Optimization](https://arxiv.org/abs/1606.02960)
Myle Ott's avatar
Myle Ott committed
15
16
17
- **Transformer (self-attention) networks**
  - [Vaswani et al. (2017): Attention Is All You Need](https://arxiv.org/abs/1706.03762)
  - **_New_** [Ott et al. (2018): Scaling Neural Machine Translation](https://arxiv.org/abs/1806.00187)
18

Myle Ott's avatar
Myle Ott committed
19
20
21
Fairseq features:
- multi-GPU (distributed) training on one machine or across multiple machines
- fast beam search generation on both CPU and GPU
Myle Ott's avatar
Myle Ott committed
22
- large mini-batch training even on a single GPU via delayed updates
Myle Ott's avatar
Myle Ott committed
23
- fast half-precision floating point (FP16) training
Myle Ott's avatar
Myle Ott committed
24
- extensible: easily register new models, criterions, and tasks
Myle Ott's avatar
Myle Ott committed
25

Myle Ott's avatar
Myle Ott committed
26
27
We also provide [pre-trained models](#pre-trained-models) for several benchmark
translation and language modeling datasets.
Sergey Edunov's avatar
Sergey Edunov committed
28
29
30
31
32

![Model](fairseq.gif)

# Requirements and Installation
* A [PyTorch installation](http://pytorch.org/)
Myle Ott's avatar
Myle Ott committed
33
34
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* Python version 3.6
Sergey Edunov's avatar
Sergey Edunov committed
35

Myle Ott's avatar
Myle Ott committed
36
Currently fairseq requires PyTorch version >= 0.4.0.
37
Please follow the instructions here: https://github.com/pytorch/pytorch#installation.
Sergey Edunov's avatar
Sergey Edunov committed
38

Myle Ott's avatar
Myle Ott committed
39
40
If you use Docker make sure to increase the shared memory size either with
`--ipc=host` or `--shm-size` as command line options to `nvidia-docker run`.
41

Myle Ott's avatar
Myle Ott committed
42
After PyTorch is installed, you can install fairseq with:
Sergey Edunov's avatar
Sergey Edunov committed
43
44
```
pip install -r requirements.txt
Myle Ott's avatar
Myle Ott committed
45
python setup.py build develop
Sergey Edunov's avatar
Sergey Edunov committed
46
47
```

Myle Ott's avatar
Myle Ott committed
48
# Getting Started
49

Myle Ott's avatar
Myle Ott committed
50
51
52
The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.
Sergey Edunov's avatar
Sergey Edunov committed
53
54
55

# Pre-trained Models

Myle Ott's avatar
Myle Ott committed
56
We provide the following pre-trained models and pre-processed, binarized test sets:
Sergey Edunov's avatar
Sergey Edunov committed
57

Myle Ott's avatar
Myle Ott committed
58
### Translation
Sergey Edunov's avatar
Sergey Edunov committed
59

Myle Ott's avatar
Myle Ott committed
60
61
62
Description | Dataset | Model | Test set(s)
---|---|---|---
Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2) | newstest2014: <br> [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2) <br> newstest2012/2013: <br> [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.ntst1213.tar.bz2)
Sergey Edunov's avatar
Sergey Edunov committed
63
Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT17 English-German](http://statmt.org/wmt17/translation-task.html#Download) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/wmt17.v2.en-de.fconv-py.tar.bz2) | newstest2014: <br> [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wmt17.v2.en-de.newstest2014.tar.bz2)
Myle Ott's avatar
Myle Ott committed
64
65
Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.joined-dict.transformer.tar.bz2) | newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2)
Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/wmt16.en-de.joined-dict.transformer.tar.bz2) | newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
66

Myle Ott's avatar
Myle Ott committed
67
68
69
70
71
72
73
### Language models

Description | Dataset | Model | Test set(s)
---|---|---|---
Convolutional <br> ([Dauphin et al., 2017](https://arxiv.org/abs/1612.08083)) | [Google Billion Words](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/gbw_fconv_lm.tar.bz2) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/gbw_test_lm.tar.bz2)
Convolutional <br> ([Dauphin et al., 2017](https://arxiv.org/abs/1612.08083)) | [WikiText-103](https://einstein.ai/research/the-wikitext-long-term-dependency-language-modeling-dataset) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/wiki103_fconv_lm.tar.bz2) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/wiki103_test_lm.tar.bz2)

Angela Fan's avatar
Angela Fan committed
74
75
76
77
78
79
80
### Stories

Description | Dataset | Model | Test set(s)
---|---|---|---
Stories with Convolutional Model <br> ([Fan et al., 2018](https://arxiv.org/abs/1805.04833)) | [WritingPrompts](https://arxiv.org/abs/1805.04833) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/models/stories_checkpoint.tar.bz2) | [download (.tar.bz2)](https://s3.amazonaws.com/fairseq-py/data/stories_test.tar.bz2)


Myle Ott's avatar
Myle Ott committed
81
### Usage
Sergey Edunov's avatar
Sergey Edunov committed
82

Myle Ott's avatar
Myle Ott committed
83
Generation with the binarized test sets can be run in batch mode as follows, e.g. for WMT 2014 English-French on a GTX-1080ti:
Sergey Edunov's avatar
Sergey Edunov committed
84
```
Sergey Edunov's avatar
Sergey Edunov committed
85
86
$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin
$ curl https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin
Sergey Edunov's avatar
Sergey Edunov committed
87
88
89
90
$ python generate.py data-bin/wmt14.en-fr.newstest2014  \
  --path data-bin/wmt14.en-fr.fconv-py/model.pt \
  --beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out
...
Sergey Edunov's avatar
Sergey Edunov committed
91
92
| Translated 3003 sentences (96311 tokens) in 166.0s (580.04 tokens/s)
| Generate test with beam=5: BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787)
Sergey Edunov's avatar
Sergey Edunov committed
93

94
# Scoring with score.py:
Sergey Edunov's avatar
Sergey Edunov committed
95
96
$ grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys
$ grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref
Sergey Edunov's avatar
Sergey Edunov committed
97
$ python score.py --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref
Sergey Edunov's avatar
Sergey Edunov committed
98
BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787)
Sergey Edunov's avatar
Sergey Edunov committed
99
100
101
102
103
104
105
```

# Join the fairseq community

* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users

Myle Ott's avatar
Myle Ott committed
106
107
108
109
110
111
112
113
114
115
116
117
118
# Citation

If you use the code in your paper, then please cite it as:

```
@inproceedings{gehring2017convs2s,
  author    = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
  title     = "{Convolutional Sequence to Sequence Learning}",
  booktitle = {Proc. of ICML},
  year      = 2017,
}
```

Sergey Edunov's avatar
Sergey Edunov committed
119
# License
Myle Ott's avatar
Myle Ott committed
120
fairseq(-py) is BSD-licensed.
Sergey Edunov's avatar
Sergey Edunov committed
121
122
The license applies to the pre-trained models as well.
We also provide an additional patent grant.
Myle Ott's avatar
Myle Ott committed
123
124

# Credits
Myle Ott's avatar
Myle Ott committed
125
126
127
128
129
This is a PyTorch version of
[fairseq](https://github.com/facebookresearch/fairseq), a sequence-to-sequence
learning toolkit from Facebook AI Research. The original authors of this
reimplementation are (in no particular order) Sergey Edunov, Myle Ott, and Sam
Gross.