README.md 11.6 KB
Newer Older
Sergey Edunov's avatar
Sergey Edunov committed
1
2
# Introduction

Myle Ott's avatar
Myle Ott committed
3
4
5
6
Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization and other text generation tasks. It provides reference implementations of various sequence-to-sequence models, including:
- **Convolutional Neural Networks (CNN)**
  - [Gehring et al. (2017): Convolutional Sequence to Sequence Learning](https://arxiv.org/abs/1705.03122)
  - [Edunov et al. (2018): Classical Structured Prediction Losses for Sequence to Sequence Learning](https://arxiv.org/abs/1711.04956)
7
  - [Dauphin et al. (2017): Language Modeling with Gated Convolutional Networks](https://arxiv.org/abs/1612.08083.pdf)
Myle Ott's avatar
Myle Ott committed
8
9
10
- **Long Short-Term Memory (LSTM) networks**
  - [Luong et al. (2015): Effective Approaches to Attention-based Neural Machine Translation](https://arxiv.org/abs/1508.04025)
  - [Wiseman and Rush (2016): Sequence-to-Sequence Learning as Beam-Search Optimization](https://arxiv.org/abs/1606.02960)
11

Myle Ott's avatar
Myle Ott committed
12
Fairseq features multi-GPU (distributed) training on one machine or across multiple machines, fast beam search generation on both CPU and GPU, and includes pre-trained models for several benchmark translation datasets.
Sergey Edunov's avatar
Sergey Edunov committed
13
14
15
16
17

![Model](fairseq.gif)

# Requirements and Installation
* A [PyTorch installation](http://pytorch.org/)
Myle Ott's avatar
Myle Ott committed
18
19
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* Python version 3.6
Sergey Edunov's avatar
Sergey Edunov committed
20

Myle Ott's avatar
Myle Ott committed
21
Currently fairseq requires PyTorch version >= 0.4.0.
22
Please follow the instructions here: https://github.com/pytorch/pytorch#installation.
Sergey Edunov's avatar
Sergey Edunov committed
23

24
25
26
If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size` as command line
options to `nvidia-docker run`.

Myle Ott's avatar
Myle Ott committed
27
After PyTorch is installed, you can install fairseq with:
Sergey Edunov's avatar
Sergey Edunov committed
28
29
30
31
32
33
```
pip install -r requirements.txt
python setup.py build
python setup.py develop
```

34
35
# Quick Start

Myle Ott's avatar
Myle Ott committed
36
The following command-line tools are provided:
Sergey Edunov's avatar
Sergey Edunov committed
37
38
39
* `python preprocess.py`: Data pre-processing: build vocabularies and binarize training data
* `python train.py`: Train a new model on one or multiple GPUs
* `python generate.py`: Translate pre-processed data with a trained model
40
* `python interactive.py`: Translate raw text with a trained model
Sergey Edunov's avatar
Sergey Edunov committed
41
* `python score.py`: BLEU scoring of generated translations against reference translations
42
* `python eval_lm.py`: Language model evaluation
Sergey Edunov's avatar
Sergey Edunov committed
43

Sergey Edunov's avatar
Sergey Edunov committed
44
## Evaluating Pre-trained Models
Sergey Edunov's avatar
Sergey Edunov committed
45
46
First, download a pre-trained model along with its vocabularies:
```
Sergey Edunov's avatar
Sergey Edunov committed
47
$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -
Sergey Edunov's avatar
Sergey Edunov committed
48
49
50
51
52
53
54
```

This model uses a [Byte Pair Encoding (BPE) vocabulary](https://arxiv.org/abs/1508.07909), so we'll have to apply the encoding to the source text before it can be translated.
This can be done with the [apply_bpe.py](https://github.com/rsennrich/subword-nmt/blob/master/apply_bpe.py) script using the `wmt14.en-fr.fconv-cuda/bpecodes` file.
`@@` is used as a continuation marker and the original text can be easily recovered with e.g. `sed s/@@ //g` or by passing the `--remove-bpe` flag to `generate.py`.
Prior to BPE, input text needs to be tokenized using `tokenizer.perl` from [mosesdecoder](https://github.com/moses-smt/mosesdecoder).

55
Let's use `python interactive.py` to generate translations interactively.
Sergey Edunov's avatar
Sergey Edunov committed
56
57
58
Here, we use a beam size of 5:
```
$ MODEL_DIR=wmt14.en-fr.fconv-py
59
$ python interactive.py \
Sergey Edunov's avatar
Sergey Edunov committed
60
61
 --path $MODEL_DIR/model.pt $MODEL_DIR \
 --beam 5
62
| loading model(s) from wmt14.en-fr.fconv-py/model.pt
Sergey Edunov's avatar
Sergey Edunov committed
63
64
| [en] dictionary: 44206 types
| [fr] dictionary: 44463 types
65
| Type the input sentence and press return:
Sergey Edunov's avatar
Sergey Edunov committed
66
67
> Why is it rare to discover new marine mam@@ mal species ?
O       Why is it rare to discover new marine mam@@ mal species ?
68
69
H       -0.06429661810398102    Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins ?
A       0 1 3 3 5 6 6 8 8 8 7 11 12
Sergey Edunov's avatar
Sergey Edunov committed
70
71
72
73
74
75
76
77
78
```

This generation script produces four types of outputs: a line prefixed with *S* shows the supplied source sentence after applying the vocabulary; *O* is a copy of the original source sentence; *H* is the hypothesis along with an average log-likelihood; and *A* is the attention maxima for each word in the hypothesis, including the end-of-sentence marker which is omitted from the text.

Check [below](#pre-trained-models) for a full list of pre-trained models available.


## Training a New Model

79
80
The following tutorial is for machine translation. For an example of how to use Fairseq for language modeling, please see the [language modeling example README](examples/language_model/README.md).

Sergey Edunov's avatar
Sergey Edunov committed
81
### Data Pre-processing
82

Myle Ott's avatar
Myle Ott committed
83
84
Fairseq contains example pre-processing scripts for several translation datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT 2014 (English-German).
To pre-process and binarize the IWSLT dataset:
Sergey Edunov's avatar
Sergey Edunov committed
85
```
86
$ cd examples/translation/
Sergey Edunov's avatar
Sergey Edunov committed
87
$ bash prepare-iwslt14.sh
88
$ cd ../..
Sergey Edunov's avatar
Sergey Edunov committed
89
90
91
$ TEXT=data/iwslt14.tokenized.de-en
$ python preprocess.py --source-lang de --target-lang en \
  --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
Sergey Edunov's avatar
Sergey Edunov committed
92
  --destdir data-bin/iwslt14.tokenized.de-en
Sergey Edunov's avatar
Sergey Edunov committed
93
94
95
96
97
98
99
```
This will write binarized data that can be used for model training to `data-bin/iwslt14.tokenized.de-en`.

### Training
Use `python train.py` to train a new model.
Here a few example settings that work well for the IWSLT 2014 dataset:
```
100
$ mkdir -p checkpoints/fconv
Sergey Edunov's avatar
Sergey Edunov committed
101
102
$ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \
  --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
103
  --arch fconv_iwslt_de_en --save-dir checkpoints/fconv
Sergey Edunov's avatar
Sergey Edunov committed
104
105
106
107
108
109
110
111
112
```

By default, `python train.py` will use all available GPUs on your machine.
Use the [CUDA_VISIBLE_DEVICES](http://acceleware.com/blog/cudavisibledevices-masking-gpus) environment variable to select specific GPUs and/or to change the number of GPU devices that will be used.

Also note that the batch size is specified in terms of the maximum number of tokens per batch (`--max-tokens`).
You may need to use a smaller value depending on the available GPU memory on your system.

### Generation
113
Once your model is trained, you can generate translations using `python generate.py` **(for binarized data)** or `python interactive.py` **(for raw text)**:
Sergey Edunov's avatar
Sergey Edunov committed
114
115
```
$ python generate.py data-bin/iwslt14.tokenized.de-en \
116
  --path checkpoints/fconv/checkpoint_best.pt \
Sergey Edunov's avatar
Sergey Edunov committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  --batch-size 128 --beam 5
  | [de] dictionary: 35475 types
  | [en] dictionary: 24739 types
  | data-bin/iwslt14.tokenized.de-en test 6750 examples
  | model fconv
  | loaded checkpoint trainings/fconv/checkpoint_best.pt
  S-721   danke .
  T-721   thank you .
  ...
```

To generate translations with only a CPU, use the `--cpu` flag.
BPE continuation markers can be removed with the `--remove-bpe` flag.

# Pre-trained Models

We provide the following pre-trained fully convolutional sequence-to-sequence models:

Sergey Edunov's avatar
Sergey Edunov committed
135
136
* [wmt14.en-fr.fconv-py.tar.bz2](https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2): Pre-trained model for [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) including vocabularies
* [wmt14.en-de.fconv-py.tar.bz2](https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-de.fconv-py.tar.bz2): Pre-trained model for [WMT14 English-German](https://nlp.stanford.edu/projects/nmt) including vocabularies
Sergey Edunov's avatar
Sergey Edunov committed
137
138

In addition, we provide pre-processed and binarized test sets for the models above:
Sergey Edunov's avatar
Sergey Edunov committed
139
140
141
* [wmt14.en-fr.newstest2014.tar.bz2](https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2): newstest2014 test set for WMT14 English-French
* [wmt14.en-fr.ntst1213.tar.bz2](https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.ntst1213.tar.bz2): newstest2012 and newstest2013 test sets for WMT14 English-French
* [wmt14.en-de.newstest2014.tar.bz2](https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-de.newstest2014.tar.bz2): newstest2014 test set for WMT14 English-German
Sergey Edunov's avatar
Sergey Edunov committed
142

Myle Ott's avatar
Myle Ott committed
143
Generation with the binarized test sets can be run in batch mode as follows, e.g. for WMT 2014 English-French on a GTX-1080ti:
Sergey Edunov's avatar
Sergey Edunov committed
144
```
Sergey Edunov's avatar
Sergey Edunov committed
145
146
$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin
$ curl https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin
Sergey Edunov's avatar
Sergey Edunov committed
147
148
149
150
$ python generate.py data-bin/wmt14.en-fr.newstest2014  \
  --path data-bin/wmt14.en-fr.fconv-py/model.pt \
  --beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out
...
Sergey Edunov's avatar
Sergey Edunov committed
151
152
| Translated 3003 sentences (96311 tokens) in 166.0s (580.04 tokens/s)
| Generate test with beam=5: BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787)
Sergey Edunov's avatar
Sergey Edunov committed
153

154
# Scoring with score.py:
Sergey Edunov's avatar
Sergey Edunov committed
155
156
$ grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys
$ grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref
Sergey Edunov's avatar
Sergey Edunov committed
157
$ python score.py --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref
Sergey Edunov's avatar
Sergey Edunov committed
158
BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787)
Sergey Edunov's avatar
Sergey Edunov committed
159
160
```

Myle Ott's avatar
Myle Ott committed
161
162
# Distributed version

Myle Ott's avatar
Myle Ott committed
163
164
165
166
Distributed training in fairseq is implemented on top of [torch.distributed](http://pytorch.org/docs/master/distributed.html).
Training begins by launching one worker process per GPU.
These workers discover each other via a unique host and port (required) that can be used to establish an initial connection.
Additionally, each worker is given a rank, that is a unique number from 0 to n-1 where n is the total number of GPUs.
Myle Ott's avatar
Myle Ott committed
167

Myle Ott's avatar
Myle Ott committed
168
If you run on a cluster managed by [SLURM](https://slurm.schedmd.com/) you can train a large English-French model on the WMT 2014 dataset on 16 nodes with 8 GPUs each (in total 128 GPUs) using this command:
Myle Ott's avatar
Myle Ott committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

```
$ DATA=... # path to the preprocessed dataset, must be visible from all nodes
$ PORT=9218 # any available tcp port that can be used by the trained to establish initial connection
$ sbatch --job-name fairseq-py --gres gpu:8 --nodes 16 --ntasks-per-node 8 \
    --cpus-per-task 10 --no-requeue --wrap 'srun --output train.log.node%t \
    --error train.stderr.node%t.%j python train.py $DATA --distributed-world-size 128 \
    --distributed-port $PORT --force-anneal 50 --lr-scheduler fixed --max-epoch 55 \
    --arch fconv_wmt_en_fr --optimizer nag --lr 0.1,4 --max-tokens 3000 \
    --clip-norm 0.1 --dropout 0.1 --criterion label_smoothed_cross_entropy \
    --label-smoothing 0.1 --wd 0.0001'
```

Alternatively you'll need to manually start one process per each GPU:
```
$ DATA=... # path to the preprocessed dataset, must be visible from all nodes
$ HOST_PORT=your.devserver.com:9218 # has to be one of the hosts that will be used by the job \
    and the port on that host has to be available
$ RANK=... # the rank of this process, has to go from 0 to 127 in case of 128 GPUs
$ python train.py $DATA --distributed-world-size 128 \
      --force-anneal 50 --lr-scheduler fixed --max-epoch 55 \
      --arch fconv_wmt_en_fr --optimizer nag --lr 0.1,4 --max-tokens 3000 \
      --clip-norm 0.1 --dropout 0.1 --criterion label_smoothed_cross_entropy \
      --label-smoothing 0.1 --wd 0.0001 \
      --distributed-init-method='tcp://$HOST_PORT' --distributed-rank=$RANK
```

Sergey Edunov's avatar
Sergey Edunov committed
196
197
198
199
200
# Join the fairseq community

* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users

Myle Ott's avatar
Myle Ott committed
201
202
203
204
205
206
207
208
209
210
211
212
213
# Citation

If you use the code in your paper, then please cite it as:

```
@inproceedings{gehring2017convs2s,
  author    = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
  title     = "{Convolutional Sequence to Sequence Learning}",
  booktitle = {Proc. of ICML},
  year      = 2017,
}
```

Sergey Edunov's avatar
Sergey Edunov committed
214
# License
Myle Ott's avatar
Myle Ott committed
215
fairseq(-py) is BSD-licensed.
Sergey Edunov's avatar
Sergey Edunov committed
216
217
The license applies to the pre-trained models as well.
We also provide an additional patent grant.
Myle Ott's avatar
Myle Ott committed
218
219
220

# Credits
This is a PyTorch version of [fairseq](https://github.com/facebookresearch/fairseq), a sequence-to-sequence learning toolkit from Facebook AI Research. The original authors of this reimplementation are (in no particular order) Sergey Edunov, Myle Ott, and Sam Gross.