test_backtranslation_dataset.py 2.35 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import unittest

import tests.utils as test_utils
import torch
from fairseq.data.backtranslation_dataset import BacktranslationDataset
13
from fairseq import sequence_generator
Myle Ott's avatar
Myle Ott committed
14
15
16
17
18
19
20
21
22
23
24
25
26


class TestBacktranslationDataset(unittest.TestCase):
    def setUp(self):
        self.tgt_dict, self.w1, self.w2, self.src_tokens, self.src_lengths, self.model = (
            test_utils.sequence_generator_setup()
        )

        dummy_src_samples = self.src_tokens

        self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples)

    def test_backtranslation_dataset(self):
27
28
29
        """
        SequenceGenerator kwargs are same as defaults from fairseq/options.py
        """
Myle Ott's avatar
Myle Ott committed
30
31
32
33
        backtranslation_dataset = BacktranslationDataset(
            tgt_dataset=self.tgt_dataset,
            tgt_dict=self.tgt_dict,
            backtranslation_model=self.model,
34
35
            max_len_a=0,
            max_len_b=200,
36
37
38
39
            beam_size=2,
            unk_penalty=0,
            sampling=False,
            generator_class=sequence_generator.SequenceGenerator,
Myle Ott's avatar
Myle Ott committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        )
        dataloader = torch.utils.data.DataLoader(
            backtranslation_dataset,
            batch_size=2,
            collate_fn=backtranslation_dataset.collater,
        )
        backtranslation_batch_result = next(iter(dataloader))

        eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2

        # Note that we sort by src_lengths and add left padding, so actually
        # ids will look like: [1, 0]
        expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]])
        expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
        generated_src = backtranslation_batch_result["net_input"]["src_tokens"]
        tgt_tokens = backtranslation_batch_result["target"]

        self.assertTensorEqual(expected_src, generated_src)
        self.assertTensorEqual(expected_tgt, tgt_tokens)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


if __name__ == "__main__":
    unittest.main()