test_backtranslation_dataset.py 2.14 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import unittest

import tests.utils as test_utils
import torch
from fairseq.data.backtranslation_dataset import BacktranslationDataset


class TestBacktranslationDataset(unittest.TestCase):
    def setUp(self):
        self.tgt_dict, self.w1, self.w2, self.src_tokens, self.src_lengths, self.model = (
            test_utils.sequence_generator_setup()
        )

        dummy_src_samples = self.src_tokens

        self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples)

    def test_backtranslation_dataset(self):
        backtranslation_dataset = BacktranslationDataset(
            tgt_dataset=self.tgt_dataset,
            tgt_dict=self.tgt_dict,
            backtranslation_model=self.model,
30
31
32
33
34
            unkpen=0,
            sampling=False,
            max_len_a=0,
            max_len_b=200,
            beam=2,
Myle Ott's avatar
Myle Ott committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        )
        dataloader = torch.utils.data.DataLoader(
            backtranslation_dataset,
            batch_size=2,
            collate_fn=backtranslation_dataset.collater,
        )
        backtranslation_batch_result = next(iter(dataloader))

        eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2

        # Note that we sort by src_lengths and add left padding, so actually
        # ids will look like: [1, 0]
        expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]])
        expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
        generated_src = backtranslation_batch_result["net_input"]["src_tokens"]
        tgt_tokens = backtranslation_batch_result["target"]

        self.assertTensorEqual(expected_src, generated_src)
        self.assertTensorEqual(expected_tgt, tgt_tokens)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


if __name__ == "__main__":
    unittest.main()