test_binaries.py 21.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

8
import contextlib
Myle Ott's avatar
Myle Ott committed
9
10
11
12
13
14
15
16
17
18
19
from io import StringIO
import os
import random
import sys
import tempfile
import unittest

import torch

from fairseq import options

Myle Ott's avatar
Myle Ott committed
20
21
22
23
import preprocess
import train
import generate
import interactive
24
25
26
27
28
29
30
31
32
33
34
35
36
import eval_lm


class TestTranslation(unittest.TestCase):

    def test_fconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir)

37
38
39
40
    def test_raw(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir:
                create_dummy_data(data_dir)
41
42
43
                preprocess_translation_data(data_dir, ['--dataset-impl', 'raw'])
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw'])
                generate_main(data_dir, ['--dataset-impl', 'raw'])
44

45
46
47
48
49
50
51
52
    def test_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
53
54
55
56
57
58
59
60
    def test_memory_efficient_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16'])
                generate_main(data_dir)

61
62
63
64
65
66
67
68
    def test_update_freq(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_update_freq') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
69
70
71
72
73
74
75
76
77
78
    def test_max_positions(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_max_positions') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                with self.assertRaises(Exception) as context:
                    train_translation_model(
                        data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'],
                    )
                self.assertTrue(
Myle Ott's avatar
Myle Ott committed
79
                    'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception)
Myle Ott's avatar
Myle Ott committed
80
81
82
83
84
85
86
87
88
                )
                train_translation_model(
                    data_dir, 'fconv_iwslt_de_en',
                    ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'],
                )
                with self.assertRaises(Exception) as context:
                    generate_main(data_dir)
                generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test'])

89
90
91
92
93
94
95
96
    def test_generation(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_sampling') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir, [
                    '--sampling',
97
                    '--temperature', '2',
98
99
100
101
102
103
104
                    '--beam', '2',
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topk', '3',
                    '--beam', '2',
Xing Zhou's avatar
Xing Zhou committed
105
106
107
108
109
110
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topp', '0.2',
                    '--beam', '2',
111
112
113
114
                    '--nbest', '2',
                ])
                generate_main(data_dir, ['--prefix-size', '2'])

115
116
117
118
119
    def test_lstm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
Myle Ott's avatar
Myle Ott committed
120
121
122
                train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
123
124
125
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
126
127
128
129
130
131
132
133
134
135
136
                ])
                generate_main(data_dir)

    def test_lstm_bidirectional(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lstm', [
                    '--encoder-layers', '2',
                    '--encoder-bidirectional',
137
138
139
140
                    '--encoder-hidden-size', '16',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
141
142
                    '--decoder-layers', '2',
                ])
143
144
145
146
147
148
149
                generate_main(data_dir)

    def test_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
150
151
152
153
154
155
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                ])
156
157
                generate_main(data_dir)

158
159
160
161
162
163
164
165
    def test_lightconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'lightweight',
                    '--decoder-conv-type', 'lightweight',
166
167
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
168
169
170
171
172
173
174
175
176
177
178
                ])
                generate_main(data_dir)

    def test_dynamicconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'dynamic',
                    '--decoder-conv-type', 'dynamic',
179
180
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
181
182
183
                ])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
184
185
186
187
188
189
190
191
192
193
    def test_mixture_of_experts(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_moe') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
194
195
196
197
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
198
199
200
201
202
203
204
205
206
                ])
                generate_main(data_dir, [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
                    '--gen-expert', '0'
                ])

207
208
209
210
211
212
213
214
215

class TestStories(unittest.TestCase):

    def test_fconv_self_att_wp(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                config = [
216
217
                    '--encoder-layers', '[(128, 3)] * 2',
                    '--decoder-layers', '[(128, 3)] * 2',
218
219
220
221
222
                    '--decoder-attention', 'True',
                    '--encoder-attention', 'False',
                    '--gated-attention', 'True',
                    '--self-attention', 'True',
                    '--project-input', 'True',
223
224
225
226
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
                    '--multihead-self-attention-nheads', '2'
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                ]
                train_translation_model(data_dir, 'fconv_self_att_wp', config)
                generate_main(data_dir)

                # fusion model
                os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt'))
                config.extend([
                    '--pretrained', 'True',
                    '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'),
                    '--save-dir', os.path.join(data_dir, 'fusion_model'),
                ])
                train_translation_model(data_dir, 'fconv_self_att_wp', config)


class TestLanguageModeling(unittest.TestCase):

    def test_fconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
                train_language_model(data_dir, 'fconv_lm', [
                    '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]',
                    '--decoder-embed-dim', '280',
                    '--optimizer', 'nag',
                    '--lr', '0.1',
                ])
                eval_lm_main(data_dir)

    def test_transformer_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
                train_language_model(data_dir, 'transformer_lm', ['--add-bos-token'])
262
263
264
                eval_lm_main(data_dir)


265
266
267
268
269
270
class TestMaskedLanguageModel(unittest.TestCase):
    def test_masked_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
271
                train_masked_language_model(data_dir, "masked_lm")
272

Matt Le's avatar
Matt Le committed
273
    def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
274
275
276
277
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Matt Le's avatar
Matt Le committed
278
279
                train_masked_language_model(
                    data_dir,
280
                    arch="masked_lm",
Matt Le's avatar
Matt Le committed
281
282
                    extra_args=('--encoder-learned-pos',) if learned_pos_emb else ()
                )
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                with tempfile.TemporaryDirectory(
                    "test_mlm_translation"
                ) as translation_dir:
                    create_dummy_data(translation_dir)
                    preprocess_translation_data(
                        translation_dir, extra_flags=["--joined-dictionary"]
                    )
                    # Train transformer with data_dir/checkpoint_last.pt
                    train_translation_model(
                        translation_dir,
                        arch="transformer_from_pretrained_xlm",
                        extra_flags=[
                            "--decoder-layers",
                            "1",
                            "--decoder-embed-dim",
                            "32",
                            "--decoder-attention-heads",
                            "1",
                            "--decoder-ffn-embed-dim",
                            "32",
                            "--encoder-layers",
                            "1",
                            "--encoder-embed-dim",
                            "32",
                            "--encoder-attention-heads",
                            "1",
                            "--encoder-ffn-embed-dim",
                            "32",
                            "--pretrained-xlm-checkpoint",
Bairen Yi's avatar
Bairen Yi committed
312
                            "{}/checkpoint_last.pt".format(data_dir),
313
314
315
316
317
318
                            "--activation-fn",
                            "gelu",
                            "--max-source-positions",
                            "500",
                            "--max-target-positions",
                            "500",
Matt Le's avatar
Matt Le committed
319
320
321
322
                        ] + (
                            ["--encoder-learned-pos", "--decoder-learned-pos"]
                            if learned_pos_emb else []
                        ) + (['--init-encoder-only'] if encoder_only else []),
323
324
325
                        task="translation_from_pretrained_xlm",
                    )

Matt Le's avatar
Matt Le committed
326
327
328
329
330
331
    def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(True, False)

    def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(False, False)

332
    def test_pretrained_masked_lm_for_translation_encoder_only(self):
Matt Le's avatar
Matt Le committed
333
        self._test_pretrained_masked_lm_for_translation(True, True)
334

Matt Le's avatar
Matt Le committed
335
def train_masked_language_model(data_dir, arch, extra_args=()):
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    train_parser = options.get_training_parser()
    # TODO: langs should be in and out right?
    train_args = options.parse_args_and_arch(
        train_parser,
        [
            "--task",
            "cross_lingual_lm",
            data_dir,
            "--arch",
            arch,
            # Optimizer args
            "--optimizer",
            "adam",
            "--lr-scheduler",
            "reduce_lr_on_plateau",
            "--lr-shrink",
            "0.5",
            "--lr",
            "0.0001",
            "--min-lr",
            "1e-09",
            # dropout, attention args
            "--dropout",
            "0.1",
            "--attention-dropout",
            "0.1",
            # MLM args
            "--criterion",
            "masked_lm_loss",
            "--masked-lm-only",
            "--monolingual-langs",
            "in,out",
            "--num-segment",
            "5",
            # Transformer args: use a small transformer model for fast training
            "--encoder-layers",
            "1",
            "--encoder-embed-dim",
            "32",
            "--encoder-attention-heads",
            "1",
            "--encoder-ffn-embed-dim",
            "32",
            # Other training args
            "--max-tokens",
            "500",
            "--tokens-per-sample",
            "500",
            "--save-dir",
            data_dir,
            "--max-epoch",
            "1",
            "--no-progress-bar",
            "--distributed-world-size",
            "1",
391
392
            "--dataset-impl",
            "raw",
Matt Le's avatar
Matt Le committed
393
        ] + list(extra_args),
394
395
396
397
    )
    train.main(train_args)


Dmytro Okhonko's avatar
Dmytro Okhonko committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
class TestCommonOptions(unittest.TestCase):

    def test_optimizers(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_optimizers') as data_dir:
                # Use just a bit of data and tiny model to keep this test runtime reasonable
                create_dummy_data(data_dir, num_examples=10, maxlen=5)
                preprocess_translation_data(data_dir)
                optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta']
                last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt')
                for optimizer in optimizers:
                    if os.path.exists(last_checkpoint):
                        os.remove(last_checkpoint)
                    train_translation_model(data_dir, 'lstm', [
412
                        '--required-batch-size-multiple', '1',
Dmytro Okhonko's avatar
Dmytro Okhonko committed
413
414
415
416
417
418
419
420
                        '--encoder-layers', '1',
                        '--encoder-hidden-size', '32',
                        '--decoder-layers', '1',
                        '--optimizer', optimizer,
                    ])
                    generate_main(data_dir)


421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def create_dummy_data(data_dir, num_examples=1000, maxlen=20):

    def _create_dummy_data(filename):
        data = torch.rand(num_examples * maxlen)
        data = 97 + torch.floor(26 * data).int()
        with open(os.path.join(data_dir, filename), 'w') as h:
            offset = 0
            for _ in range(num_examples):
                ex_len = random.randint(1, maxlen)
                ex_str = ' '.join(map(chr, data[offset:offset+ex_len]))
                print(ex_str, file=h)
                offset += ex_len

    _create_dummy_data('train.in')
    _create_dummy_data('train.out')
    _create_dummy_data('valid.in')
    _create_dummy_data('valid.out')
    _create_dummy_data('test.in')
    _create_dummy_data('test.out')


442
def preprocess_translation_data(data_dir, extra_flags=None):
443
    preprocess_parser = options.get_preprocessing_parser()
444
445
446
447
448
449
450
451
452
453
454
455
    preprocess_args = preprocess_parser.parse_args(
        [
            '--source-lang', 'in',
            '--target-lang', 'out',
            '--trainpref', os.path.join(data_dir, 'train'),
            '--validpref', os.path.join(data_dir, 'valid'),
            '--testpref', os.path.join(data_dir, 'test'),
            '--thresholdtgt', '0',
            '--thresholdsrc', '0',
            '--destdir', data_dir,
        ] + (extra_flags or []),
    )
456
457
458
    preprocess.main(preprocess_args)


459
def train_translation_model(data_dir, arch, extra_flags=None, task='translation'):
460
461
462
463
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
464
            '--task', task,
465
466
467
468
469
470
471
472
            data_dir,
            '--save-dir', data_dir,
            '--arch', arch,
            '--lr', '0.05',
            '--max-tokens', '500',
            '--max-epoch', '1',
            '--no-progress-bar',
            '--distributed-world-size', '1',
Myle Ott's avatar
Myle Ott committed
473
474
            '--source-lang', 'in',
            '--target-lang', 'out',
475
476
477
478
479
        ] + (extra_flags or []),
    )
    train.main(train_args)


480
def generate_main(data_dir, extra_flags=None):
481
    generate_parser = options.get_generation_parser()
Myle Ott's avatar
Myle Ott committed
482
483
484
485
486
487
488
489
490
491
    generate_args = options.parse_args_and_arch(
        generate_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--beam', '3',
            '--batch-size', '64',
            '--max-len-b', '5',
            '--gen-subset', 'valid',
            '--no-progress-bar',
Myle Ott's avatar
Myle Ott committed
492
            '--print-alignment',
493
        ] + (extra_flags or []),
Myle Ott's avatar
Myle Ott committed
494
    )
495
496
497
498
499
500

    # evaluate model in batch mode
    generate.main(generate_args)

    # evaluate model interactively
    generate_args.buffer_size = 0
501
    generate_args.input = '-'
502
503
504
505
506
507
508
509
    generate_args.max_sentences = None
    orig_stdin = sys.stdin
    sys.stdin = StringIO('h e l l o\n')
    interactive.main(generate_args)
    sys.stdin = orig_stdin


def preprocess_lm_data(data_dir):
510
    preprocess_parser = options.get_preprocessing_parser()
511
512
513
514
515
516
517
518
519
520
    preprocess_args = preprocess_parser.parse_args([
        '--only-source',
        '--trainpref', os.path.join(data_dir, 'train.out'),
        '--validpref', os.path.join(data_dir, 'valid.out'),
        '--testpref', os.path.join(data_dir, 'test.out'),
        '--destdir', data_dir,
    ])
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
521
def train_language_model(data_dir, arch, extra_flags=None):
522
523
524
525
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
Myle Ott's avatar
Myle Ott committed
526
            '--task', 'language_modeling',
Myle Ott's avatar
Myle Ott committed
527
            data_dir,
528
            '--arch', arch,
Myle Ott's avatar
Myle Ott committed
529
530
            '--optimizer', 'adam',
            '--lr', '0.0001',
531
532
533
            '--criterion', 'adaptive_loss',
            '--adaptive-softmax-cutoff', '5,10,15',
            '--max-tokens', '500',
Myle Ott's avatar
Myle Ott committed
534
            '--tokens-per-sample', '500',
535
536
            '--save-dir', data_dir,
            '--max-epoch', '1',
Myle Ott's avatar
Myle Ott committed
537
            '--no-progress-bar',
538
            '--distributed-world-size', '1',
539
            '--ddp-backend', 'no_c10d',
Myle Ott's avatar
Myle Ott committed
540
        ] + (extra_flags or []),
541
542
543
544
545
546
    )
    train.main(train_args)


def eval_lm_main(data_dir):
    eval_lm_parser = options.get_eval_lm_parser()
Myle Ott's avatar
Myle Ott committed
547
548
549
550
551
552
553
554
    eval_lm_args = options.parse_args_and_arch(
        eval_lm_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--no-progress-bar',
        ],
    )
555
    eval_lm.main(eval_lm_args)
Myle Ott's avatar
Myle Ott committed
556
557
558
559


if __name__ == '__main__':
    unittest.main()