README.md 12.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
# RoBERTa: A Robustly Optimized BERT Pretraining Approach

Myle Ott's avatar
Myle Ott committed
3
https://arxiv.org/abs/1907.11692
Myle Ott's avatar
Myle Ott committed
4

Myle Ott's avatar
Myle Ott committed
5
## Introduction
Myle Ott's avatar
Myle Ott committed
6

Myle Ott's avatar
Myle Ott committed
7
RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.
Myle Ott's avatar
Myle Ott committed
8

Myle Ott's avatar
Myle Ott committed
9
10
### What's New:

11
- November 2019: Multilingual encoder (XLM-RoBERTa) is available [XLM-R](https://github.com/pytorch/fairseq/examples/xlmr).
12
- September 2019: TensorFlow and TPU support via the [transformers library](https://github.com/huggingface/transformers).
Myle Ott's avatar
Myle Ott committed
13
14
- August 2019: RoBERTa is now supported in the [pytorch-transformers library](https://github.com/huggingface/pytorch-transformers).
- August 2019: Added [tutorial for finetuning on WinoGrande](https://github.com/pytorch/fairseq/tree/master/examples/roberta/wsc#roberta-training-on-winogrande-dataset).
Myle Ott's avatar
Myle Ott committed
15
16
- August 2019: Added [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).

Myle Ott's avatar
Myle Ott committed
17
## Pre-trained models
Myle Ott's avatar
Myle Ott committed
18
19
20
21
22

Model | Description | # params | Download
---|---|---|---
`roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz)
`roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz)
Myle Ott's avatar
Myle Ott committed
23
`roberta.large.mnli` | `roberta.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz)
24
`roberta.large.wsc` | `roberta.large` finetuned on [WSC](wsc/README.md) | 355M | [roberta.large.wsc.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz)
Myle Ott's avatar
Myle Ott committed
25

Myle Ott's avatar
Myle Ott committed
26
## Results
27

Myle Ott's avatar
Myle Ott committed
28
29
**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
_(dev set, single model, single-task finetuning)_
Myle Ott's avatar
Myle Ott committed
30

31
32
33
34
35
36
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
---|---|---|---|---|---|---|---|---
`roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
`roberta.large.mnli` | 90.2 | - | - | - | - | - | - | -

Myle Ott's avatar
Myle Ott committed
37
38
**[SuperGLUE (Wang et al., 2019)](https://super.gluebenchmark.com/)**
_(dev set, single model, single-task finetuning)_
39
40
41

Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC
---|---|---|---|---|---|---|---
Myle Ott's avatar
Myle Ott committed
42
43
`roberta.large` | 86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | -
`roberta.large.wsc` | - | - | - | - | - | - | 91.3
44

Myle Ott's avatar
Myle Ott committed
45
46
**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
_(dev set, no additional data used)_
47
48
49
50
51

Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
---|---|---
`roberta.large` | 88.9/94.6 | 86.5/89.4

Myle Ott's avatar
Myle Ott committed
52
53
**[RACE (Lai et al., 2017)](http://www.qizhexie.com/data/RACE_leaderboard.html)**
_(test set)_
54
55
56
57
58

Model | Accuracy | Middle | High
---|---|---|---
`roberta.large` | 83.2 | 86.5 | 81.3

Myle Ott's avatar
Myle Ott committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
**[HellaSwag (Zellers et al., 2019)](https://rowanzellers.com/hellaswag/)**
_(test set)_

Model | Overall | In-domain | Zero-shot | ActivityNet | WikiHow
---|---|---|---|---|---
`roberta.large` | 85.2 | 87.3 | 83.1 | 74.6 | 90.9

**[Commonsense QA (Talmor et al., 2019)](https://www.tau-nlp.org/commonsenseqa)**
_(test set)_

Model | Accuracy
---|---
`roberta.large` (single model) | 72.1
`roberta.large` (ensemble) | 72.5

**[Winogrande (Sakaguchi et al., 2019)](https://arxiv.org/abs/1907.10641)**
_(test set)_

Model | Accuracy
---|---
`roberta.large` | 78.1

Myle Ott's avatar
Myle Ott committed
81
82
83
84
85
86
87
**[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)**
_(TRANSLATE-TEST)_

Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
`roberta.large.mnli` | 91.3 | 82.91 | 84.27 | 81.24 | 81.74 | 83.13 | 78.28 | 76.79 | 76.64 | 74.17 | 74.05 | 77.5 | 70.9 | 66.65 | 66.81

Myle Ott's avatar
Myle Ott committed
88
## Example usage
89
90

##### Load RoBERTa from torch.hub (PyTorch >= 1.1):
Myle Ott's avatar
Myle Ott committed
91
92
93
94
```python
import torch
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
roberta.eval()  # disable dropout (or leave in train mode to finetune)
Myle Ott's avatar
Myle Ott committed
95
96
```

Myle Ott's avatar
Myle Ott committed
97
##### Load RoBERTa (for PyTorch 1.0 or custom models):
Myle Ott's avatar
Myle Ott committed
98
99
100
101
```python
# Download roberta.large model
wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
tar -xzvf roberta.large.tar.gz
102

Myle Ott's avatar
Myle Ott committed
103
104
# Load the model in fairseq
from fairseq.models.roberta import RobertaModel
Myle Ott's avatar
Myle Ott committed
105
roberta = RobertaModel.from_pretrained('/path/to/roberta.large', checkpoint_file='model.pt')
Myle Ott's avatar
Myle Ott committed
106
roberta.eval()  # disable dropout (or leave in train mode to finetune)
107
108
```

Myle Ott's avatar
Myle Ott committed
109
##### Apply Byte-Pair Encoding (BPE) to input text:
Myle Ott's avatar
Myle Ott committed
110
111
112
113
```python
tokens = roberta.encode('Hello world!')
assert tokens.tolist() == [0, 31414, 232, 328, 2]
roberta.decode(tokens)  # 'Hello world!'
Myle Ott's avatar
Myle Ott committed
114
115
116
```

##### Extract features from RoBERTa:
Myle Ott's avatar
Myle Ott committed
117
118
119
120
```python
# Extract the last layer's features
last_layer_features = roberta.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 5, 1024])
121

Myle Ott's avatar
Myle Ott committed
122
123
124
125
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = roberta.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 25
assert torch.all(all_layers[-1] == last_layer_features)
Myle Ott's avatar
Myle Ott committed
126
127
128
```

##### Use RoBERTa for sentence-pair classification tasks:
Myle Ott's avatar
Myle Ott committed
129
130
131
132
```python
# Download RoBERTa already finetuned for MNLI
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()  # disable dropout for evaluation
Myle Ott's avatar
Myle Ott committed
133

Myle Ott's avatar
Myle Ott committed
134
135
136
# Encode a pair of sentences and make a prediction
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.')
roberta.predict('mnli', tokens).argmax()  # 0: contradiction
Myle Ott's avatar
Myle Ott committed
137

Myle Ott's avatar
Myle Ott committed
138
139
140
# Encode another pair of sentences
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.')
roberta.predict('mnli', tokens).argmax()  # 2: entailment
Myle Ott's avatar
Myle Ott committed
141
142
143
```

##### Register a new (randomly initialized) classification head:
Myle Ott's avatar
Myle Ott committed
144
145
146
```python
roberta.register_classification_head('new_task', num_classes=3)
logprobs = roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=<LogSoftmaxBackward>)
Myle Ott's avatar
Myle Ott committed
147
```
Myle Ott's avatar
Myle Ott committed
148
149
150

##### Batched prediction:
```python
151
import torch
Myle Ott's avatar
Myle Ott committed
152
from fairseq.data.data_utils import collate_tokens
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()

batch_of_pairs = [
    ['Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.'],
    ['Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.'],
    ['potatoes are awesome.', 'I like to run.'],
    ['Mars is very far from earth.', 'Mars is very close.'],
]

batch = collate_tokens(
    [roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
)

logprobs = roberta.predict('mnli', batch)
print(logprobs.argmax(dim=1))
# tensor([0, 2, 1, 0])
Myle Ott's avatar
Myle Ott committed
171
172
173
```

##### Using the GPU:
Myle Ott's avatar
Myle Ott committed
174
175
176
```python
roberta.cuda()
roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=<LogSoftmaxBackward>)
Myle Ott's avatar
Myle Ott committed
177
178
```

Myle Ott's avatar
Myle Ott committed
179
## Advanced usage
Myle Ott's avatar
Myle Ott committed
180
181
182
183
184

#### Filling masks:

RoBERTa can be used to fill `<mask>` tokens in the input. Some examples from the
[Natural Questions dataset](https://ai.google.com/research/NaturalQuestions/):
185
```python
Myle Ott's avatar
Myle Ott committed
186
roberta.fill_mask('The first Star wars movie came out in <mask>', topk=3)
187
# [('The first Star wars movie came out in 1977', 0.9504708051681519, ' 1977'), ('The first Star wars movie came out in 1978', 0.009986862540245056, ' 1978'), ('The first Star wars movie came out in 1979', 0.009574787691235542, ' 1979')]
Myle Ott's avatar
Myle Ott committed
188
189

roberta.fill_mask('Vikram samvat calender is official in <mask>', topk=3)
190
# [('Vikram samvat calender is official in India', 0.21878819167613983, ' India'), ('Vikram samvat calender is official in Delhi', 0.08547237515449524, ' Delhi'), ('Vikram samvat calender is official in Gujarat', 0.07556215673685074, ' Gujarat')]
Myle Ott's avatar
Myle Ott committed
191
192

roberta.fill_mask('<mask> is the common currency of the European Union', topk=3)
193
# [('Euro is the common currency of the European Union', 0.9456493854522705, 'Euro'), ('euro is the common currency of the European Union', 0.025748178362846375, 'euro'), ('€ is the common currency of the European Union', 0.011183084920048714, '€')]
Myle Ott's avatar
Myle Ott committed
194
```
195

Myle Ott's avatar
Myle Ott committed
196
#### Pronoun disambiguation (Winograd Schema Challenge):
197

Myle Ott's avatar
Myle Ott committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model:
```bash
pip install spacy
python -m spacy download en_core_web_lg
```

Next load the `roberta.large.wsc` model and call the `disambiguate_pronoun`
function. The pronoun should be surrounded by square brackets (`[]`) and the
query referent surrounded by underscores (`_`), or left blank to return the
predicted candidate text directly:
```python
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc')
roberta.cuda()  # use the GPU (optional)

roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.')
# True
roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.')
# False

roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.')
# 'The city councilmen'
roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.')
# 'demonstrators'
```

223
See the [RoBERTA Winograd Schema Challenge (WSC) README](wsc/README.md) for more details on how to train this model.
Myle Ott's avatar
Myle Ott committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

#### Extract features aligned to words:

By default RoBERTa outputs one feature vector per BPE token. You can instead
realign the features to match [spaCy's word-level tokenization](https://spacy.io/usage/linguistic-features#tokenization)
with the `extract_features_aligned_to_words` method. This will compute a
weighted average of the BPE-level features for each word and expose them in
spaCy's `Token.vector` attribute:
```python
doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."')
assert len(doc) == 10
for tok in doc:
    print('{:10}{} (...)'.format(str(tok), tok.vector[:5]))
# <s>       tensor([-0.1316, -0.0386, -0.0832, -0.0477,  0.1943], grad_fn=<SliceBackward>) (...)
# I         tensor([ 0.0559,  0.1541, -0.4832,  0.0880,  0.0120], grad_fn=<SliceBackward>) (...)
# said      tensor([-0.1565, -0.0069, -0.8915,  0.0501, -0.0647], grad_fn=<SliceBackward>) (...)
# ,         tensor([-0.1318, -0.0387, -0.0834, -0.0477,  0.1944], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.0486,  0.1818, -0.3946, -0.0553,  0.0981], grad_fn=<SliceBackward>) (...)
# hello     tensor([ 0.0079,  0.1799, -0.6204, -0.0777, -0.0923], grad_fn=<SliceBackward>) (...)
# RoBERTa   tensor([-0.2339, -0.1184, -0.7343, -0.0492,  0.5829], grad_fn=<SliceBackward>) (...)
# .         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# </s>      tensor([-0.0930, -0.0392, -0.0821,  0.0158,  0.0649], grad_fn=<SliceBackward>) (...)
247
248
```

Myle Ott's avatar
Myle Ott committed
249
#### Evaluating the `roberta.large.mnli` model:
Myle Ott's avatar
Myle Ott committed
250

Myle Ott's avatar
Myle Ott committed
251
Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
Myle Ott's avatar
Myle Ott committed
252
```python
Myle Ott's avatar
Myle Ott committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/MNLI/dev_matched.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('mnli', tokens).argmax().item()
        prediction_label = label_map[prediction]
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
# Expected output: 0.9060
```

Myle Ott's avatar
Myle Ott committed
271
## Finetuning
Myle Ott's avatar
Myle Ott committed
272

Myle Ott's avatar
Myle Ott committed
273
274
- [Finetuning on GLUE](README.glue.md)
- [Finetuning on custom classification tasks (e.g., IMDB)](README.custom_classification.md)
275
276
- [Finetuning on Winograd Schema Challenge (WSC)](wsc/README.md)
- [Finetuning on Commonsense QA (CQA)](commonsense_qa/README.md)
Myle Ott's avatar
Myle Ott committed
277
- Finetuning on SQuAD: coming soon
278

Myle Ott's avatar
Myle Ott committed
279
## Pretraining using your own data
Myle Ott's avatar
Myle Ott committed
280

Myle Ott's avatar
Myle Ott committed
281
See the [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).
Myle Ott's avatar
Myle Ott committed
282

Myle Ott's avatar
Myle Ott committed
283
## Citation
Myle Ott's avatar
Myle Ott committed
284
285
286

```bibtex
@article{liu2019roberta,
Myle Ott's avatar
Myle Ott committed
287
288
289
290
291
292
    title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
    author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
              Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
              Luke Zettlemoyer and Veselin Stoyanov},
    journal={arXiv preprint arXiv:1907.11692},
    year = {2019},
Myle Ott's avatar
Myle Ott committed
293
294
}
```