README.md 4.57 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# RoBERTa: A Robustly Optimized BERT Pretraining Approach

*Pre-print coming 7/28*

## Introduction

**RoBERTa** iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.

## Pre-trained models

Model | Description | # params | Download
---|---|---|---
`roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz)
`roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz)
`roberta.large.mnli` | `roberta.large` finetuned on MNLI | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz)

## Example usage (torch.hub)

##### Load RoBERTa:
```
>>> import torch
>>> roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
```

##### Apply Byte-Pair Encoding (BPE) to input text:
```
>>> tokens = roberta.encode('Hello world!')
>>> tokens
tensor([    0, 31414,   232,   328,     2])
```

##### Extract features from RoBERTa:
```
>>> features = roberta.extract_features(tokens)
>>> features.size()
torch.Size([1, 5, 1024])
```

##### Use RoBERTa for sentence-pair classification tasks:
```
>>> roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')  # already finetuned
>>> roberta.eval()  # disable dropout for evaluation

>>> tokens = roberta.encode(
...   'Roberta is a heavily optimized version of BERT.',
...   'Roberta is not very optimized.'
... )

>>> roberta.predict('mnli', tokens).argmax()
tensor(0)  # contradiction

>>> tokens = roberta.encode(
...   'Roberta is a heavily optimized version of BERT.',
...   'Roberta is based on BERT.'
... )

>>> roberta.predict('mnli', tokens).argmax()
tensor(2)  # entailment
```

##### Register a new (randomly initialized) classification head:
```
>>> roberta.register_classification_head('new_task', num_classes=3)
>>> roberta.predict('new_task', tokens)
tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=<LogSoftmaxBackward>)
```

##### Using the GPU:
```
>>> roberta.cuda()
>>> roberta.predict('new_task', tokens)
tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=<LogSoftmaxBackward>)
```

## Results

##### Results on GLUE tasks (dev set, single model, single-task finetuning)

Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
---|---|---|---|---|---|---|---|---
`roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
`roberta.large.mnli` | 90.2 | - | - | - | - | - | - | -

##### Results on SQuAD (dev set)

Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
---|---|---
`roberta.large` | 88.9/94.6 | 86.5/89.4

##### Results on Reading Comprehension (RACE, test set)

Model | Accuracy | Middle | High
---|---|---|---
`roberta.large` | 83.2 | 86.5 | 81.3

## Evaluating the `roberta.large.mnli` model

Example python code snippet to evaluate accuracy on the MNLI dev_matched set.
```
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/MNLI/dev_matched.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('mnli', tokens).argmax().item()
        prediction_label = label_map[prediction]
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
# Expected output: 0.9060
```

## Finetuning on GLUE tasks

A more detailed tutorial is coming soon.

## Pretraining using your own data

You can use the [`masked_lm` task](/fairseq/tasks/masked_lm.py) to pretrain RoBERTa from scratch, or to continue pretraining RoBERTa starting from one of the released checkpoints.

Data should be preprocessed following the [language modeling example](/examples/language_model).

A more detailed tutorial is coming soon.

## Citation

```bibtex
@article{liu2019roberta,
  title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
  author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
            Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
            Luke Zettlemoyer and Veselin Stoyanov},
  year = {2019},
}
```