getting_started.rst 7.52 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
Evaluating Pre-trained Models
=============================

First, download a pre-trained model along with its vocabularies:

.. code-block:: console

8
    > curl https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -
Myle Ott's avatar
Myle Ott committed
9
10
11
12
13
14
15
16
17

This model uses a `Byte Pair Encoding (BPE)
vocabulary <https://arxiv.org/abs/1508.07909>`__, so we'll have to apply
the encoding to the source text before it can be translated. This can be
done with the
`apply\_bpe.py <https://github.com/rsennrich/subword-nmt/blob/master/apply_bpe.py>`__
script using the ``wmt14.en-fr.fconv-cuda/bpecodes`` file. ``@@`` is
used as a continuation marker and the original text can be easily
recovered with e.g. ``sed s/@@ //g`` or by passing the ``--remove-bpe``
Myle Ott's avatar
Myle Ott committed
18
flag to :ref:`fairseq-generate`. Prior to BPE, input text needs to be tokenized
Myle Ott's avatar
Myle Ott committed
19
20
21
using ``tokenizer.perl`` from
`mosesdecoder <https://github.com/moses-smt/mosesdecoder>`__.

22
23
24
25
Let's use :ref:`fairseq-interactive` to generate translations interactively.
Here, we use a beam size of 5 and preprocess the input with the Moses
tokenizer and the given Byte-Pair Encoding vocabulary. It will automatically
remove the BPE continuation markers and detokenize the output.
Myle Ott's avatar
Myle Ott committed
26
27
28
29

.. code-block:: console

    > MODEL_DIR=wmt14.en-fr.fconv-py
Myle Ott's avatar
Myle Ott committed
30
    > fairseq-interactive \
Myle Ott's avatar
Myle Ott committed
31
        --path $MODEL_DIR/model.pt $MODEL_DIR \
32
33
34
        --beam 5 --source-lang en --target-lang fr \
        --tokenizer moses \
        --bpe subword_nmt --bpe-codes $MODEL_DIR/bpecodes
Myle Ott's avatar
Myle Ott committed
35
36
37
38
    | loading model(s) from wmt14.en-fr.fconv-py/model.pt
    | [en] dictionary: 44206 types
    | [fr] dictionary: 44463 types
    | Type the input sentence and press return:
39
40
41
42
    Why is it rare to discover new marine mammal species?
    S-0     Why is it rare to discover new marine mam@@ mal species ?
    H-0     -0.0643349438905716     Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins?
    P-0     -0.0763 -0.1849 -0.0956 -0.0946 -0.0735 -0.1150 -0.1301 -0.0042 -0.0321 -0.0171 -0.0052 -0.0062 -0.0015
Myle Ott's avatar
Myle Ott committed
43
44
45
46
47

This generation script produces three types of outputs: a line prefixed
with *O* is a copy of the original source sentence; *H* is the
hypothesis along with an average log-likelihood; and *P* is the
positional score per token position, including the
Myle Ott's avatar
Myle Ott committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
end-of-sentence marker which is omitted from the text.

See the `README <https://github.com/pytorch/fairseq#pre-trained-models>`__ for a
full list of pre-trained models available.

Training a New Model
====================

The following tutorial is for machine translation. For an example of how
to use Fairseq for other tasks, such as :ref:`language modeling`, please see the
``examples/`` directory.

Data Pre-processing
-------------------

Fairseq contains example pre-processing scripts for several translation
datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT
2014 (English-German). To pre-process and binarize the IWSLT dataset:

.. code-block:: console

    > cd examples/translation/
    > bash prepare-iwslt14.sh
    > cd ../..
    > TEXT=examples/translation/iwslt14.tokenized.de-en
Myle Ott's avatar
Myle Ott committed
73
    > fairseq-preprocess --source-lang de --target-lang en \
Myle Ott's avatar
Myle Ott committed
74
75
76
77
78
79
80
81
82
        --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
        --destdir data-bin/iwslt14.tokenized.de-en

This will write binarized data that can be used for model training to
``data-bin/iwslt14.tokenized.de-en``.

Training
--------

Myle Ott's avatar
Myle Ott committed
83
Use :ref:`fairseq-train` to train a new model. Here a few example settings that work
Myle Ott's avatar
Myle Ott committed
84
85
86
87
88
well for the IWSLT 2014 dataset:

.. code-block:: console

    > mkdir -p checkpoints/fconv
Myle Ott's avatar
Myle Ott committed
89
    > CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt14.tokenized.de-en \
Myle Ott's avatar
Myle Ott committed
90
91
92
        --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
        --arch fconv_iwslt_de_en --save-dir checkpoints/fconv

Myle Ott's avatar
Myle Ott committed
93
By default, :ref:`fairseq-train` will use all available GPUs on your machine. Use the
Myle Ott's avatar
Myle Ott committed
94
95
96
97
98
99
100
101
102
103
104
``CUDA_VISIBLE_DEVICES`` environment variable to select specific GPUs and/or to
change the number of GPU devices that will be used.

Also note that the batch size is specified in terms of the maximum
number of tokens per batch (``--max-tokens``). You may need to use a
smaller value depending on the available GPU memory on your system.

Generation
----------

Once your model is trained, you can generate translations using
Myle Ott's avatar
Myle Ott committed
105
106
:ref:`fairseq-generate` **(for binarized data)** or
:ref:`fairseq-interactive` **(for raw text)**:
Myle Ott's avatar
Myle Ott committed
107
108
109

.. code-block:: console

Myle Ott's avatar
Myle Ott committed
110
    > fairseq-generate data-bin/iwslt14.tokenized.de-en \
Myle Ott's avatar
Myle Ott committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        --path checkpoints/fconv/checkpoint_best.pt \
        --batch-size 128 --beam 5
    | [de] dictionary: 35475 types
    | [en] dictionary: 24739 types
    | data-bin/iwslt14.tokenized.de-en test 6750 examples
    | model fconv
    | loaded checkpoint trainings/fconv/checkpoint_best.pt
    S-721   danke .
    T-721   thank you .
    ...

To generate translations with only a CPU, use the ``--cpu`` flag. BPE
continuation markers can be removed with the ``--remove-bpe`` flag.

Advanced Training Options
=========================

Large mini-batch training with delayed updates
----------------------------------------------

The ``--update-freq`` option can be used to accumulate gradients from
multiple mini-batches and delay updating, creating a larger effective
batch size. Delayed updates can also improve training speed by reducing
inter-GPU communication costs and by saving idle time caused by variance
in workload across GPUs. See `Ott et al.
(2018) <https://arxiv.org/abs/1806.00187>`__ for more details.

To train on a single GPU with an effective batch size that is equivalent
to training on 8 GPUs:

.. code-block:: console

Myle Ott's avatar
Myle Ott committed
143
    > CUDA_VISIBLE_DEVICES=0 fairseq-train --update-freq 8 (...)
Myle Ott's avatar
Myle Ott committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Training with half precision floating point (FP16)
--------------------------------------------------

.. note::

    FP16 training requires a Volta GPU and CUDA 9.1 or greater

Recent GPUs enable efficient half precision floating point computation,
e.g., using `Nvidia Tensor Cores
<https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html>`__.
Fairseq supports FP16 training with the ``--fp16`` flag:

.. code-block:: console

Myle Ott's avatar
Myle Ott committed
159
    > fairseq-train --fp16 (...)
Myle Ott's avatar
Myle Ott committed
160

161
162
Lazily loading large training datasets
--------------------------------------
Myle Ott's avatar
Myle Ott committed
163

164
165
166
167
By default fairseq loads the entire training set into system memory. For large
datasets, the ``--lazy-load`` option can be used to instead load batches on-demand.
For optimal performance, use the ``--num-workers`` option to control the number
of background processes that will load batches.
Myle Ott's avatar
Myle Ott committed
168

169
170
Distributed training
--------------------
Myle Ott's avatar
Myle Ott committed
171

172
173
174
Distributed training in fairseq is implemented on top of ``torch.distributed``.
The easiest way to launch jobs is with the `torch.distributed.launch
<https://pytorch.org/docs/stable/distributed.html#launch-utility>`__ tool.
Myle Ott's avatar
Myle Ott committed
175

176
177
178
For example, to train a large English-German Transformer model on 2 nodes each
with 8 GPUs (in total 16 GPUs), run the following command on each node,
replacing ``node_rank=0`` with ``node_rank=1`` on the second node:
Myle Ott's avatar
Myle Ott committed
179
180
181

.. code-block:: console

182
183
184
    > python -m torch.distributed.launch --nproc_per_node=8 \
        --nnodes=2 --node_rank=0 --master_addr="192.168.1.1" \
        --master_port=1234 \
Myle Ott's avatar
Myle Ott committed
185
        $(which fairseq-train) data-bin/wmt16_en_de_bpe32k \
186
187
188
189
190
191
192
        --arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \
        --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
        --max-tokens 3584 \
        --fp16