getting_started.rst 8.07 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Evaluating Pre-trained Models
=============================

First, download a pre-trained model along with its vocabularies:

.. code-block:: console

    > curl https://s3.amazonaws.com/fairseq-py/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -

This model uses a `Byte Pair Encoding (BPE)
vocabulary <https://arxiv.org/abs/1508.07909>`__, so we'll have to apply
the encoding to the source text before it can be translated. This can be
done with the
`apply\_bpe.py <https://github.com/rsennrich/subword-nmt/blob/master/apply_bpe.py>`__
script using the ``wmt14.en-fr.fconv-cuda/bpecodes`` file. ``@@`` is
used as a continuation marker and the original text can be easily
recovered with e.g. ``sed s/@@ //g`` or by passing the ``--remove-bpe``
flag to :ref:`generate.py`. Prior to BPE, input text needs to be tokenized
using ``tokenizer.perl`` from
`mosesdecoder <https://github.com/moses-smt/mosesdecoder>`__.

Let's use :ref:`interactive.py` to generate translations
interactively. Here, we use a beam size of 5:

.. code-block:: console

    > MODEL_DIR=wmt14.en-fr.fconv-py
    > python interactive.py \
        --path $MODEL_DIR/model.pt $MODEL_DIR \
Myle Ott's avatar
Myle Ott committed
30
        --beam 5 --source-lang en --target-lang fr
Myle Ott's avatar
Myle Ott committed
31
32
33
34
35
36
    | loading model(s) from wmt14.en-fr.fconv-py/model.pt
    | [en] dictionary: 44206 types
    | [fr] dictionary: 44463 types
    | Type the input sentence and press return:
    > Why is it rare to discover new marine mam@@ mal species ?
    O       Why is it rare to discover new marine mam@@ mal species ?
Myle Ott's avatar
Myle Ott committed
37
38
39
40
41
42
43
    H       -0.1525060087442398     Pourquoi est @-@ il rare de découvrir de nouvelles espèces de mammifères marins ?
    P       -0.2221 -0.3122 -0.1289 -0.2673 -0.1711 -0.1930 -0.1101 -0.1660 -0.1003 -0.0740 -0.1101 -0.0814 -0.1238 -0.0985 -0.1288

This generation script produces three types of outputs: a line prefixed
with *O* is a copy of the original source sentence; *H* is the
hypothesis along with an average log-likelihood; and *P* is the
positional score per token position, including the
Myle Ott's avatar
Myle Ott committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
end-of-sentence marker which is omitted from the text.

See the `README <https://github.com/pytorch/fairseq#pre-trained-models>`__ for a
full list of pre-trained models available.

Training a New Model
====================

The following tutorial is for machine translation. For an example of how
to use Fairseq for other tasks, such as :ref:`language modeling`, please see the
``examples/`` directory.

Data Pre-processing
-------------------

Fairseq contains example pre-processing scripts for several translation
datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT
2014 (English-German). To pre-process and binarize the IWSLT dataset:

.. code-block:: console

    > cd examples/translation/
    > bash prepare-iwslt14.sh
    > cd ../..
    > TEXT=examples/translation/iwslt14.tokenized.de-en
    > python preprocess.py --source-lang de --target-lang en \
        --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
        --destdir data-bin/iwslt14.tokenized.de-en

This will write binarized data that can be used for model training to
``data-bin/iwslt14.tokenized.de-en``.

Training
--------

Use :ref:`train.py` to train a new model. Here a few example settings that work
well for the IWSLT 2014 dataset:

.. code-block:: console

    > mkdir -p checkpoints/fconv
    > CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \
        --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
        --arch fconv_iwslt_de_en --save-dir checkpoints/fconv

By default, :ref:`train.py` will use all available GPUs on your machine. Use the
``CUDA_VISIBLE_DEVICES`` environment variable to select specific GPUs and/or to
change the number of GPU devices that will be used.

Also note that the batch size is specified in terms of the maximum
number of tokens per batch (``--max-tokens``). You may need to use a
smaller value depending on the available GPU memory on your system.

Generation
----------

Once your model is trained, you can generate translations using
:ref:`generate.py` **(for binarized data)** or
:ref:`interactive.py` **(for raw text)**:

.. code-block:: console

    > python generate.py data-bin/iwslt14.tokenized.de-en \
        --path checkpoints/fconv/checkpoint_best.pt \
        --batch-size 128 --beam 5
    | [de] dictionary: 35475 types
    | [en] dictionary: 24739 types
    | data-bin/iwslt14.tokenized.de-en test 6750 examples
    | model fconv
    | loaded checkpoint trainings/fconv/checkpoint_best.pt
    S-721   danke .
    T-721   thank you .
    ...

To generate translations with only a CPU, use the ``--cpu`` flag. BPE
continuation markers can be removed with the ``--remove-bpe`` flag.

Advanced Training Options
=========================

Large mini-batch training with delayed updates
----------------------------------------------

The ``--update-freq`` option can be used to accumulate gradients from
multiple mini-batches and delay updating, creating a larger effective
batch size. Delayed updates can also improve training speed by reducing
inter-GPU communication costs and by saving idle time caused by variance
in workload across GPUs. See `Ott et al.
(2018) <https://arxiv.org/abs/1806.00187>`__ for more details.

To train on a single GPU with an effective batch size that is equivalent
to training on 8 GPUs:

.. code-block:: console

    > CUDA_VISIBLE_DEVICES=0 python train.py --update-freq 8 (...)

Training with half precision floating point (FP16)
--------------------------------------------------

.. note::

    FP16 training requires a Volta GPU and CUDA 9.1 or greater

Recent GPUs enable efficient half precision floating point computation,
e.g., using `Nvidia Tensor Cores
<https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html>`__.
Fairseq supports FP16 training with the ``--fp16`` flag:

.. code-block:: console

    > python train.py --fp16 (...)

Distributed training
--------------------

Distributed training in fairseq is implemented on top of
`torch.distributed <http://pytorch.org/docs/master/distributed.html>`__.
Training begins by launching one worker process per GPU. These workers
discover each other via a unique host and port (required) that can be
used to establish an initial connection. Additionally, each worker has a
rank, that is a unique number from 0 to n-1 where n is the total number
of GPUs.

If you run on a cluster managed by
`SLURM <https://slurm.schedmd.com/>`__ you can train a large
English-French model on the WMT 2014 dataset on 16 nodes with 8 GPUs
each (in total 128 GPUs) using this command:

.. code-block:: console

    > DATA=...   # path to the preprocessed dataset, must be visible from all nodes
    > PORT=9218  # any available TCP port that can be used by the trainer to establish initial connection
    > sbatch --job-name fairseq-py --gres gpu:8 --cpus-per-task 10 \
        --nodes 16 --ntasks-per-node 8 \
        --wrap 'srun --output train.log.node%t --error train.stderr.node%t.%j \
        python train.py $DATA \
        --distributed-world-size 128 \
        --distributed-port $PORT \
        --force-anneal 50 --lr-scheduler fixed --max-epoch 55 \
        --arch fconv_wmt_en_fr --optimizer nag --lr 0.1,4 --max-tokens 3000 \
        --clip-norm 0.1 --dropout 0.1 --criterion label_smoothed_cross_entropy \
        --label-smoothing 0.1 --wd 0.0001'

Alternatively you can manually start one process per GPU:

.. code-block:: console

    > DATA=...  # path to the preprocessed dataset, must be visible from all nodes
    > HOST_PORT=master.example.com:9218  # one of the hosts used by the job
    > RANK=...  # the rank of this process, from 0 to 127 in case of 128 GPUs
Sergey Edunov's avatar
Sergey Edunov committed
195
    > LOCAL_RANK=... # the local rank of this process, from 0 to 7 in case of 8 GPUs per machine
Myle Ott's avatar
Myle Ott committed
196
197
198
199
    > python train.py $DATA \
        --distributed-world-size 128 \
        --distributed-init-method 'tcp://$HOST_PORT' \
        --distributed-rank $RANK \
Sergey Edunov's avatar
Sergey Edunov committed
200
        --device-id $LOCAL_RANK \
Myle Ott's avatar
Myle Ott committed
201
202
203
204
        --force-anneal 50 --lr-scheduler fixed --max-epoch 55 \
        --arch fconv_wmt_en_fr --optimizer nag --lr 0.1,4 --max-tokens 3000 \
        --clip-norm 0.1 --dropout 0.1 --criterion label_smoothed_cross_entropy \
        --label-smoothing 0.1 --wd 0.0001