"examples/vscode:/vscode.git/clone" did not exist on "610c9d2a063bf0695d4f1c3cc396f0c1f2c3a4af"
generate.py 6 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import torch

12
from fairseq import bleu, data, options, tokenizer, utils
Sergey Edunov's avatar
Sergey Edunov committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.sequence_generator import SequenceGenerator


def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path', metavar='FILE', required=True, action='append',
                        help='path(s) to model file(s)')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N',
                              help='batch size')
    dataset_args.add_argument('--gen-subset', default='test', metavar='SPLIT',
                              help='data subset to generate (train, valid, test)')
    options.add_generation_args(parser)

    args = parser.parse_args()
29
    if args.no_progress_bar and args.log_format is None:
30
        args.log_format = 'none'
Sergey Edunov's avatar
Sergey Edunov committed
31
32
33
34
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

35
    # Load dataset
36
37
38
39
    if args.replace_unk is None:
        dataset = data.load_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
40
41
42
43
44
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    # Load ensemble
Sergey Edunov's avatar
Sergey Edunov committed
45
    print('| loading model(s) from {}'.format(', '.join(args.path)))
Myle Ott's avatar
Myle Ott committed
46
    models, _ = utils.load_ensemble_for_inference(args.path, dataset.src_dict, dataset.dst_dict)
Sergey Edunov's avatar
Sergey Edunov committed
47
48
49

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
Louis Martin's avatar
Louis Martin committed
50
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset.splits[args.gen_subset])))
Sergey Edunov's avatar
Sergey Edunov committed
51

52
    # Optimize ensemble for generation
Sergey Edunov's avatar
Sergey Edunov committed
53
    for model in models:
Myle Ott's avatar
Myle Ott committed
54
55
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)
Sergey Edunov's avatar
Sergey Edunov committed
56
57

    # Initialize generator
58
    translator = SequenceGenerator(
59
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
60
61
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
62
63
64
65
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
Louis Martin's avatar
Louis Martin committed
66
67
68
69
70
71
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
    max_positions = min(model.max_encoder_positions() for model in models)
Myle Ott's avatar
Myle Ott committed
72
    itr = dataset.eval_dataloader(
73
        args.gen_subset, max_sentences=args.batch_size, max_positions=max_positions,
Myle Ott's avatar
Myle Ott committed
74
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Louis Martin's avatar
Louis Martin committed
75
    num_sentences = 0
76
    with utils.build_progress_bar(args, itr) as t:
Louis Martin's avatar
Louis Martin committed
77
78
79
80
81
82
83
84
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
            cuda_device=0 if use_cuda else None, timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
85
86
87
88
89
90
91
92
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = dataset.splits[args.gen_subset].src.get_original_text(sample_id)
                target_str = dataset.splits[args.gen_subset].dst.get_original_text(sample_id)
            else:
                src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
                target_str = dataset.dst_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

Louis Martin's avatar
Louis Martin committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
109
                    print('A-{}\t{}'.format(sample_id, ' '.join(map(str, alignment))))
Louis Martin's avatar
Louis Martin committed
110
111
112

                # Score only the top hypothesis
                if i == 0:
113
114
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
Louis Martin's avatar
Louis Martin committed
115
116
117
118
119
120
                        target_tokens = tokenizer.Tokenizer.tokenize(target_str,
                                                                     dataset.dst_dict,
                                                                     add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
121
            t.log({'wps': round(wps_meter.avg)})
Louis Martin's avatar
Louis Martin committed
122
123
124
125
126
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
Sergey Edunov's avatar
Sergey Edunov committed
127
128
129
130


if __name__ == '__main__':
    main()