generate.py 5.58 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import torch

12
from fairseq import bleu, data, options, tokenizer, utils
Sergey Edunov's avatar
Sergey Edunov committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.progress_bar import progress_bar
from fairseq.sequence_generator import SequenceGenerator


def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path', metavar='FILE', required=True, action='append',
                        help='path(s) to model file(s)')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N',
                              help='batch size')
    dataset_args.add_argument('--gen-subset', default='test', metavar='SPLIT',
                              help='data subset to generate (train, valid, test)')
    options.add_generation_args(parser)

    args = parser.parse_args()
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
    use_cuda = torch.cuda.is_available() and not args.cpu

36
37
38
39
40
41
42
    # Load dataset
    dataset = data.load_with_check(args.data, [args.gen_subset], args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    # Load ensemble
Sergey Edunov's avatar
Sergey Edunov committed
43
    print('| loading model(s) from {}'.format(', '.join(args.path)))
44
    models = utils.load_ensemble_for_inference(args.path, dataset.src_dict, dataset.dst_dict)
Sergey Edunov's avatar
Sergey Edunov committed
45
46
47

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
Louis Martin's avatar
Louis Martin committed
48
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset.splits[args.gen_subset])))
Sergey Edunov's avatar
Sergey Edunov committed
49

50
    # Optimize ensemble for generation
Sergey Edunov's avatar
Sergey Edunov committed
51
    for model in models:
Myle Ott's avatar
Myle Ott committed
52
53
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)
Sergey Edunov's avatar
Sergey Edunov committed
54
55

    # Initialize generator
56
    translator = SequenceGenerator(
57
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
58
59
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
60
61
62
63
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
Louis Martin's avatar
Louis Martin committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
    max_positions = min(model.max_encoder_positions() for model in models)
    itr = dataset.dataloader(args.gen_subset, batch_size=args.batch_size,
                             max_positions=max_positions,
                             skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
    num_sentences = 0
    with progress_bar(itr, smoothing=0, leave=False) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
            cuda_device=0 if use_cuda else None, timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
            src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
            target_str = dataset.dst_dict.string(target_tokens, args.remove_bpe, escape_unk=True)
            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print('A-{}\t{}'.format(sample_id, ' '.join(map(str, alignment))))
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))

                # Score only the top hypothesis
                if i == 0:
                    if args.remove_bpe is not None:
                        # Convert the string without BPE back to tokens for evaluation
                        target_tokens = tokenizer.Tokenizer.tokenize(target_str,
                                                                     dataset.dst_dict,
                                                                     add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.set_postfix(wps='{:5d}'.format(round(wps_meter.avg)), refresh=False)
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
Sergey Edunov's avatar
Sergey Edunov committed
119
120
121
122


if __name__ == '__main__':
    main()