train.py 13.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
10
11
12
import collections
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
13

14
15
from itertools import islice

alexeib's avatar
alexeib committed
16
from fairseq import criterions, models, options, progress_bar
17
from fairseq.data import data_utils, data_loaders
18
19
20
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
21
from fairseq.utils import checkpoint_paths
Sergey Edunov's avatar
Sergey Edunov committed
22

Myle Ott's avatar
Myle Ott committed
23

Myle Ott's avatar
Myle Ott committed
24
def main(args):
25
26
27
    if args.max_tokens is None:
        args.max_tokens = 6000

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    dataset = load_dataset(args, splits)
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args, model, criterion)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
        trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    train_dataloader = dataset.train_dataloader_generator(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(
            min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
            min(args.max_target_positions, trainer.get_model().max_decoder_positions())
        ),
        seed=args.seed,
        sample_without_replacement=args.sample_without_replacement,
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )

    # Load the latest checkpoint if one is available
alexeib's avatar
alexeib committed
78
    epoch, next_ds = load_checkpoint(args, trainer, train_dataloader)
79
80

    # Send a dummy batch to warm the caching allocator
alexeib's avatar
alexeib committed
81
    dummy_batch = data_utils.get_dummy_batch(args.max_tokens, dataset.src_dict, dataset.dst_dict)
82
83
84
85
86
87
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
88
    first_val_loss = None
89
90
91
92
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
alexeib's avatar
alexeib committed
93
        train(args, trainer, next_ds, epoch, dataset)
94
95

        if epoch % args.validate_interval == 0:
96
            first_val_loss = val_loss(args, trainer, dataset, epoch)
97
98
99
100
101
102

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch, first_val_loss)

        # save checkpoint
        if not args.no_save and epoch % args.save_interval == 0:
103
            save_checkpoint(trainer, args, epoch, end_of_epoch=True, val_loss=first_val_loss)
104
105

        epoch += 1
alexeib's avatar
alexeib committed
106
        next_ds = next(train_dataloader)
107
108
109
110
111
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


def load_dataset(args, splits):
alexeib's avatar
alexeib committed
112
113
    is_raw = not data_utils.has_binary_files(args.data, splits)
    dataset = data_loaders.load_dataset(args, splits, is_raw)
114
115
116
    return dataset


117
def train(args, trainer, itr, epoch, dataset):
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    # update parameters every N batches
    if epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch - 1]
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    max_update = args.max_update or math.inf
    num_batches = len(itr)
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    for i, sample in enumerate(progress):
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

165
166
167
168
169
170
        num_updates = trainer.get_num_updates()
        if not args.no_save and (args.save_interval_updates or 0) > 0 and num_updates % args.save_interval_updates == 0:
            first_val_loss = val_loss(args, trainer, dataset, epoch, num_updates)
            save_checkpoint(trainer, args, epoch, end_of_epoch=False, val_loss=first_val_loss)

        if num_updates >= max_update:
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
    return stats


204
def validate(args, trainer, dataset, subset, epoch, num_updates):
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    """Evaluate the model on the validation set and return the average loss."""

    # Initialize dataloader
    max_positions_valid = (
        trainer.get_model().max_encoder_positions(),
        trainer.get_model().max_decoder_positions(),
    )
    itr = dataset.eval_dataloader(
        subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions_valid,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(
        args, itr, epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple'
    )

    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for sample in progress:
        log_output = trainer.valid_step(sample)

    # log validation stats
    stats = get_valid_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
242
243
244
245

    if num_updates is not None:
        stats['num_updates'] = num_updates

246
247
248
249
250
251
252
253
254
255
256
    progress.print(stats)

    return stats['valid_loss']


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
257
    else:
258
259
260
261
262
263
264
265
266
267
268
269
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


270
271
272
273
def val_loss(args, trainer, dataset, epoch, num_updates=None):
    # evaluate on validate set
    subsets = args.valid_subset.split(',')
    # we want to validate all subsets so the results get printed out, but return only the first
274
    losses = [validate(args, trainer, dataset, subset, epoch, num_updates) for subset in subsets]
275
276
277
278
    return losses[0] if len(losses) > 0 else None


def save_checkpoint(trainer, args, epoch, end_of_epoch, val_loss):
279
280
281
    extra_state = {
        'epoch': epoch,
        'val_loss': val_loss,
282
        'wall_time': trainer.get_meter('wall').elapsed_time,
alexeib's avatar
alexeib committed
283
        'end_of_epoch': end_of_epoch,
284
285
    }

286
    if end_of_epoch and not args.no_epoch_checkpoints:
287
288
        epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
        trainer.save_checkpoint(epoch_filename, extra_state)
289
290
291
292
293
294
295
296
297
    elif not end_of_epoch and args.keep_interval_updates > 0:
        checkpoint_filename = os.path.join(args.save_dir,
                                           'checkpoint_{}_{}.pt'.format(epoch, trainer.get_num_updates()))
        trainer.save_checkpoint(checkpoint_filename, extra_state)
        # remove old checkpoints
        checkpoints = checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
        # checkpoints are sorted in descending order
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

    assert val_loss is not None
    if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
        save_checkpoint.best = val_loss
        best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
        trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


def load_checkpoint(args, trainer, train_dataloader):
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    epoch = 1
alexeib's avatar
alexeib committed
313
    ds = None
314
315
316
317
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            epoch = extra_state['epoch']
alexeib's avatar
alexeib committed
318
            end_of_epoch = extra_state.get('end_of_epoch', True)
alexeib's avatar
alexeib committed
319
320
            trainer_updates = trainer.get_num_updates()

alexeib's avatar
alexeib committed
321
            print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
alexeib's avatar
alexeib committed
322

323
            trainer.lr_step(epoch)
alexeib's avatar
alexeib committed
324
            updates = 0
325
            for i in range(epoch):
alexeib's avatar
alexeib committed
326
327
328
                ds = next(train_dataloader)
                updates += len(ds)

alexeib's avatar
alexeib committed
329
            if not end_of_epoch and ds is not None and updates > trainer_updates:
330
331
332
333
                completed_batches = len(ds) - (updates - trainer_updates)
                assert completed_batches >= 0
                ds = iter(ds)

alexeib's avatar
alexeib committed
334
335
                print('| resuming from batch {}'.format(completed_batches + 1))

336
337
                # consume completed batches
                next(islice(ds, completed_batches, completed_batches), None)
alexeib's avatar
alexeib committed
338
            else:
alexeib's avatar
alexeib committed
339
340
                if not end_of_epoch:
                    print('| WARNING: checkpoint is not at end of epoch')
alexeib's avatar
alexeib committed
341
342
343
                ds = next(train_dataloader)
                epoch += 1

344
            trainer.get_meter('wall').reset(init=extra_state.get('wall_time', 0))
alexeib's avatar
alexeib committed
345
    return epoch, ds or next(train_dataloader)
Sergey Edunov's avatar
Sergey Edunov committed
346

Myle Ott's avatar
Myle Ott committed
347

Sergey Edunov's avatar
Sergey Edunov committed
348
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
349
350
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
351
352
353

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
354

355
356
357
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
358

359
360
361
        multiprocessing_main(args)
    else:
        main(args)