README.md 10.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
# RoBERTa: A Robustly Optimized BERT Pretraining Approach

Myle Ott's avatar
Myle Ott committed
3
https://arxiv.org/abs/1907.11692
Myle Ott's avatar
Myle Ott committed
4
5
6
7
8
9
10
11
12
13
14

## Introduction

**RoBERTa** iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.

## Pre-trained models

Model | Description | # params | Download
---|---|---|---
`roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz)
`roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz)
Myle Ott's avatar
Myle Ott committed
15
16
`roberta.large.mnli` | `roberta.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz)
`roberta.large.wsc` | `roberta.large` finetuned on [WSC](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html) | 355M | [roberta.large.wsc.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz)
Myle Ott's avatar
Myle Ott committed
17

18
19
20
## Results

##### Results on GLUE tasks (dev set, single model, single-task finetuning)
Myle Ott's avatar
Myle Ott committed
21

22
23
24
25
26
27
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
---|---|---|---|---|---|---|---|---
`roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
`roberta.large.mnli` | 90.2 | - | - | - | - | - | - | -

28
29
30
31
##### Results on SuperGLUE tasks (dev set, single model, single-task finetuning)

Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC
---|---|---|---|---|---|---|---
Myle Ott's avatar
Myle Ott committed
32
33
`roberta.large` | 86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | -
`roberta.large.wsc` | - | - | - | - | - | - | 91.3
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
##### Results on SQuAD (dev set)

Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
---|---|---
`roberta.large` | 88.9/94.6 | 86.5/89.4

##### Results on Reading Comprehension (RACE, test set)

Model | Accuracy | Middle | High
---|---|---|---
`roberta.large` | 83.2 | 86.5 | 81.3

## Example usage

##### Load RoBERTa from torch.hub (PyTorch >= 1.1):
Myle Ott's avatar
Myle Ott committed
50
51
52
53
```python
import torch
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
roberta.eval()  # disable dropout (or leave in train mode to finetune)
Myle Ott's avatar
Myle Ott committed
54
55
```

56
##### Load RoBERTa (for PyTorch 1.0):
Myle Ott's avatar
Myle Ott committed
57
58
59
60
```python
# Download roberta.large model
wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
tar -xzvf roberta.large.tar.gz
61

Myle Ott's avatar
Myle Ott committed
62
63
64
65
# Load the model in fairseq
from fairseq.models.roberta import RobertaModel
roberta = RobertaModel.from_pretrained('/path/to/roberta.large')
roberta.eval()  # disable dropout (or leave in train mode to finetune)
66
67
```

Myle Ott's avatar
Myle Ott committed
68
##### Apply Byte-Pair Encoding (BPE) to input text:
Myle Ott's avatar
Myle Ott committed
69
70
71
72
```python
tokens = roberta.encode('Hello world!')
assert tokens.tolist() == [0, 31414, 232, 328, 2]
roberta.decode(tokens)  # 'Hello world!'
Myle Ott's avatar
Myle Ott committed
73
74
75
```

##### Extract features from RoBERTa:
Myle Ott's avatar
Myle Ott committed
76
77
78
79
```python
# Extract the last layer's features
last_layer_features = roberta.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 5, 1024])
80

Myle Ott's avatar
Myle Ott committed
81
82
83
84
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = roberta.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 25
assert torch.all(all_layers[-1] == last_layer_features)
Myle Ott's avatar
Myle Ott committed
85
86
87
```

##### Use RoBERTa for sentence-pair classification tasks:
Myle Ott's avatar
Myle Ott committed
88
89
90
91
```python
# Download RoBERTa already finetuned for MNLI
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()  # disable dropout for evaluation
Myle Ott's avatar
Myle Ott committed
92

Myle Ott's avatar
Myle Ott committed
93
94
95
# Encode a pair of sentences and make a prediction
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.')
roberta.predict('mnli', tokens).argmax()  # 0: contradiction
Myle Ott's avatar
Myle Ott committed
96

Myle Ott's avatar
Myle Ott committed
97
98
99
# Encode another pair of sentences
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.')
roberta.predict('mnli', tokens).argmax()  # 2: entailment
Myle Ott's avatar
Myle Ott committed
100
101
102
```

##### Register a new (randomly initialized) classification head:
Myle Ott's avatar
Myle Ott committed
103
104
105
```python
roberta.register_classification_head('new_task', num_classes=3)
logprobs = roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=<LogSoftmaxBackward>)
Myle Ott's avatar
Myle Ott committed
106
```
Myle Ott's avatar
Myle Ott committed
107
108
109
110
111
112
113
114

##### Batched prediction:
```python
from fairseq.data.data_utils import collate_tokens
sentences = ['Hello world.', 'Another unrelated sentence.']
batch = collate_tokens([roberta.encode(sent) for sent in sentences], pad_idx=1)
logprobs = roberta.predict('new_task', batch)
assert logprobs.size() == torch.Size([2, 3])
Myle Ott's avatar
Myle Ott committed
115
116
117
```

##### Using the GPU:
Myle Ott's avatar
Myle Ott committed
118
119
120
```python
roberta.cuda()
roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=<LogSoftmaxBackward>)
Myle Ott's avatar
Myle Ott committed
121
122
```

Myle Ott's avatar
Myle Ott committed
123
124
125
126
127
128
## Advanced usage

#### Filling masks:

RoBERTa can be used to fill `<mask>` tokens in the input. Some examples from the
[Natural Questions dataset](https://ai.google.com/research/NaturalQuestions/):
129
```python
Myle Ott's avatar
Myle Ott committed
130
131
132
133
134
135
136
137
138
roberta.fill_mask('The first Star wars movie came out in <mask>', topk=3)
# [('The first Star wars movie came out in 1977', 0.9504712224006653), ('The first Star wars movie came out in 1978', 0.009986752644181252), ('The first Star wars movie came out in 1979', 0.00957468245178461)]

roberta.fill_mask('Vikram samvat calender is official in <mask>', topk=3)
# [('Vikram samvat calender is official in India', 0.21878768503665924), ('Vikram samvat calender is official in Delhi', 0.08547217398881912), ('Vikram samvat calender is official in Gujarat', 0.07556255906820297)]

roberta.fill_mask('<mask> is the common currency of the European Union', topk=3)
# [('Euro is the common currency of the European Union', 0.945650577545166), ('euro is the common currency of the European Union', 0.025747718289494514), ('€ is the common currency of the European Union', 0.011183015070855618)]
```
139

Myle Ott's avatar
Myle Ott committed
140
#### Pronoun disambiguation (Winograd Schema Challenge):
141

Myle Ott's avatar
Myle Ott committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model:
```bash
pip install spacy
python -m spacy download en_core_web_lg
```

Next load the `roberta.large.wsc` model and call the `disambiguate_pronoun`
function. The pronoun should be surrounded by square brackets (`[]`) and the
query referent surrounded by underscores (`_`), or left blank to return the
predicted candidate text directly:
```python
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc')
roberta.cuda()  # use the GPU (optional)

roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.')
# True
roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.')
# False

roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.')
# 'The city councilmen'
roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.')
# 'demonstrators'
```

See the [RoBERTA Winograd Schema Challenge (WSC) README](README.wsc.md) for more details on how to train this model.

#### Extract features aligned to words:

By default RoBERTa outputs one feature vector per BPE token. You can instead
realign the features to match [spaCy's word-level tokenization](https://spacy.io/usage/linguistic-features#tokenization)
with the `extract_features_aligned_to_words` method. This will compute a
weighted average of the BPE-level features for each word and expose them in
spaCy's `Token.vector` attribute:
```python
doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."')
assert len(doc) == 10
for tok in doc:
    print('{:10}{} (...)'.format(str(tok), tok.vector[:5]))
# <s>       tensor([-0.1316, -0.0386, -0.0832, -0.0477,  0.1943], grad_fn=<SliceBackward>) (...)
# I         tensor([ 0.0559,  0.1541, -0.4832,  0.0880,  0.0120], grad_fn=<SliceBackward>) (...)
# said      tensor([-0.1565, -0.0069, -0.8915,  0.0501, -0.0647], grad_fn=<SliceBackward>) (...)
# ,         tensor([-0.1318, -0.0387, -0.0834, -0.0477,  0.1944], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.0486,  0.1818, -0.3946, -0.0553,  0.0981], grad_fn=<SliceBackward>) (...)
# hello     tensor([ 0.0079,  0.1799, -0.6204, -0.0777, -0.0923], grad_fn=<SliceBackward>) (...)
# RoBERTa   tensor([-0.2339, -0.1184, -0.7343, -0.0492,  0.5829], grad_fn=<SliceBackward>) (...)
# .         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# </s>      tensor([-0.0930, -0.0392, -0.0821,  0.0158,  0.0649], grad_fn=<SliceBackward>) (...)
191
192
```

Myle Ott's avatar
Myle Ott committed
193
#### Evaluating the `roberta.large.mnli` model:
Myle Ott's avatar
Myle Ott committed
194

Myle Ott's avatar
Myle Ott committed
195
Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
Myle Ott's avatar
Myle Ott committed
196
```python
Myle Ott's avatar
Myle Ott committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/MNLI/dev_matched.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('mnli', tokens).argmax().item()
        prediction_label = label_map[prediction]
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
# Expected output: 0.9060
```

215

Myle Ott's avatar
Myle Ott committed
216
## Finetuning
Myle Ott's avatar
Myle Ott committed
217

Myle Ott's avatar
Myle Ott committed
218
219
- [Finetuning on GLUE](README.glue.md)
- [Finetuning on custom classification tasks (e.g., IMDB)](README.custom_classification.md)
Myle Ott's avatar
Myle Ott committed
220
- [Finetuning on Winograd Schema Challenge (WSC)](README.wsc.md)
Myle Ott's avatar
Myle Ott committed
221
- [Finetuning on Commonsense QA (CQA)](README.cqa.md)
Myle Ott's avatar
Myle Ott committed
222
- Finetuning on SQuAD: coming soon
223

Myle Ott's avatar
Myle Ott committed
224
225
226
227
228
229
230
231
232
233
234
235
## Pretraining using your own data

You can use the [`masked_lm` task](/fairseq/tasks/masked_lm.py) to pretrain RoBERTa from scratch, or to continue pretraining RoBERTa starting from one of the released checkpoints.

Data should be preprocessed following the [language modeling example](/examples/language_model).

A more detailed tutorial is coming soon.

## Citation

```bibtex
@article{liu2019roberta,
Myle Ott's avatar
Myle Ott committed
236
237
238
239
240
241
    title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
    author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
              Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
              Luke Zettlemoyer and Veselin Stoyanov},
    journal={arXiv preprint arXiv:1907.11692},
    year = {2019},
Myle Ott's avatar
Myle Ott committed
242
243
}
```