train.py 14.1 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
10
11
12
import collections
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
13

14
15
from itertools import islice

Myle Ott's avatar
Myle Ott committed
16
from fairseq import criterions, models, options, progress_bar, utils
17
from fairseq.data import data_utils, data_loaders
18
19
20
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
21

Myle Ott's avatar
Myle Ott committed
22

Myle Ott's avatar
Myle Ott committed
23
def main(args):
24
25
26
    if args.max_tokens is None:
        args.max_tokens = 6000

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    dataset = load_dataset(args, splits)
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args, model, criterion)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
        trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    train_dataloader = dataset.train_dataloader_generator(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(
            min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
            min(args.max_target_positions, trainer.get_model().max_decoder_positions())
        ),
        seed=args.seed,
        sample_without_replacement=args.sample_without_replacement,
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )

    # Load the latest checkpoint if one is available
alexeib's avatar
alexeib committed
77
    epoch, next_ds = load_checkpoint(args, trainer, train_dataloader)
78
79

    # Send a dummy batch to warm the caching allocator
alexeib's avatar
alexeib committed
80
    dummy_batch = data_utils.get_dummy_batch(args.max_tokens, dataset.src_dict, dataset.dst_dict)
81
82
83
84
85
86
87
88
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
89
    valid_losses = [None]
90
    valid_subsets = args.valid_subset.split(',')
91
92
    while lr > args.min_lr and epoch <= max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
alexeib's avatar
alexeib committed
93
        train(args, trainer, next_ds, epoch, dataset)
94
95

        if epoch % args.validate_interval == 0:
96
            valid_losses = validate(args, trainer, dataset, valid_subsets, epoch)
97
98

        # only use first validation loss to update the learning rate
99
        lr = trainer.lr_step(epoch, valid_losses[0])
100
101

        # save checkpoint
102
        if epoch % args.save_interval == 0:
103
            save_checkpoint(args, trainer, epoch, end_of_epoch=True, val_loss=valid_losses[0])
104
105

        epoch += 1
alexeib's avatar
alexeib committed
106
        next_ds = next(train_dataloader)
107
108
109
110
111
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


def load_dataset(args, splits):
alexeib's avatar
alexeib committed
112
113
    is_raw = not data_utils.has_binary_files(args.data, splits)
    dataset = data_loaders.load_dataset(args, splits, is_raw)
114
115
116
    return dataset


117
def train(args, trainer, itr, epoch, dataset):
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    # update parameters every N batches
    if epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch - 1]
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
138
    first_valid = args.valid_subset.split(',')[0]
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    max_update = args.max_update or math.inf
    num_batches = len(itr)
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    for i, sample in enumerate(progress):
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

166
        num_updates = trainer.get_num_updates()
167
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0:
168
169
            valid_losses = validate(args, trainer, dataset, [first_valid], epoch)
            save_checkpoint(args, trainer, epoch, end_of_epoch=False, val_loss=valid_losses[0])
170
171

        if num_updates >= max_update:
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
    return stats


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def validate(args, trainer, dataset, subsets, epoch):
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
        # Initialize dataloader
        max_positions_valid = (
            trainer.get_model().max_encoder_positions(),
            trainer.get_model().max_decoder_positions(),
        )
        itr = dataset.eval_dataloader(
            subset,
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
            max_positions=max_positions_valid,
            skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
            descending=True,  # largest batch first to warm the caching allocator
            shard_id=args.distributed_rank,
            num_shards=args.distributed_world_size,
        )
        progress = progress_bar.build_progress_bar(
            args, itr, epoch,
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()

        extra_meters = collections.defaultdict(lambda: AverageMeter())
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
                if k in ['loss', 'nll_loss', 'sample_size']:
                    continue
                extra_meters[k].update(v)
244

245
246
247
248
249
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
250

251
252
        valid_losses.append(stats['valid_loss'])
    return valid_losses
253
254
255
256
257
258
259
260


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
261
    else:
262
263
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
264
265
266
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
267
268
269
270
271
272
273
274
275
276
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def save_checkpoint(args, trainer, epoch, end_of_epoch, val_loss):
    if args.no_save or args.distributed_rank > 0:
        return
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
        end_of_epoch and not args.no_epoch_checkpoints and
        epoch % args.save_interval == 0
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
        not end_of_epoch and args.save_interval_updates > 0 and
        updates % args.save_interval_updates == 0
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Myle Ott's avatar
Myle Ott committed
292
293
        val_loss is not None and
        (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
294
295
296
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
297
298
299
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
300
    extra_state = {
Myle Ott's avatar
Myle Ott committed
301
        'best': prev_best,
302
        'end_of_epoch': end_of_epoch,
303
304
        'epoch': epoch,
        'val_loss': val_loss,
305
        'wall_time': trainer.get_meter('wall').elapsed_time,
306
307
    }

308
309
310
311
312
313
314
315
316
317
318
319
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
        for fn in checkpoints:
            if os.path.exists(fn):
                os.remove(fn)
        trainer.save_checkpoint(checkpoints[0], extra_state)
        for fn in checkpoints[1:]:
            os.symlink(os.path.basename(checkpoints[0]), fn)

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
320
321
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
322
323
324
325
326
327


def load_checkpoint(args, trainer, train_dataloader):
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    epoch = 1
alexeib's avatar
alexeib committed
328
    ds = None
329
330
331
332
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            epoch = extra_state['epoch']
alexeib's avatar
alexeib committed
333
            end_of_epoch = extra_state.get('end_of_epoch', True)
alexeib's avatar
alexeib committed
334
335
            trainer_updates = trainer.get_num_updates()

336
337
338
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']

alexeib's avatar
alexeib committed
339
            print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
alexeib's avatar
alexeib committed
340

341
            trainer.lr_step(epoch)
alexeib's avatar
alexeib committed
342
            updates = 0
343
            for i in range(epoch):
alexeib's avatar
alexeib committed
344
345
346
                ds = next(train_dataloader)
                updates += len(ds)

alexeib's avatar
alexeib committed
347
            if not end_of_epoch and ds is not None and updates > trainer_updates:
348
349
350
351
                completed_batches = len(ds) - (updates - trainer_updates)
                assert completed_batches >= 0
                ds = iter(ds)

alexeib's avatar
alexeib committed
352
353
                print('| resuming from batch {}'.format(completed_batches + 1))

354
355
                # consume completed batches
                next(islice(ds, completed_batches, completed_batches), None)
alexeib's avatar
alexeib committed
356
            else:
alexeib's avatar
alexeib committed
357
358
                if not end_of_epoch:
                    print('| WARNING: checkpoint is not at end of epoch')
alexeib's avatar
alexeib committed
359
360
361
                ds = next(train_dataloader)
                epoch += 1

362
            trainer.get_meter('wall').reset(init=extra_state.get('wall_time', 0))
alexeib's avatar
alexeib committed
363
    return epoch, ds or next(train_dataloader)
Sergey Edunov's avatar
Sergey Edunov committed
364

Myle Ott's avatar
Myle Ott committed
365

Sergey Edunov's avatar
Sergey Edunov committed
366
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
367
368
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
369
370
371

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
372

373
374
375
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
376

377
378
379
        multiprocessing_main(args)
    else:
        main(args)