prep_mustc_data.py 7.33 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
import os
import os.path as op
import shutil
from itertools import groupby
from tempfile import NamedTemporaryFile
from typing import Tuple

import pandas as pd
import torchaudio
from examples.speech_to_text.data_utils import (
    create_zip,
    extract_fbank_features,
    filter_manifest_df,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    save_df_to_tsv,
)
from torch import Tensor
from torch.utils.data import Dataset
from tqdm import tqdm


log = logging.getLogger(__name__)


MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
TASKS = ["asr", "st"]


class MUSTC(Dataset):
    """
    Create a Dataset for MuST-C. Each item is a tuple of the form:
    waveform, sample_rate, source utterance, target utterance, speaker_id,
    utterance_id
    """

    SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"]
    LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"]

    def __init__(self, root: str, lang: str, split: str) -> None:
        assert split in self.SPLITS and lang in self.LANGUAGES
        _root = op.join(root, f"en-{lang}", "data", split)
        wav_root, txt_root = op.join(_root, "wav"), op.join(_root, "txt")
        assert op.isdir(_root) and op.isdir(wav_root) and op.isdir(txt_root)
        # Load audio segments
        try:
            import yaml
        except ImportError:
            print("Please install PyYAML to load YAML files for " "the MuST-C dataset")
        with open(op.join(txt_root, f"{split}.yaml")) as f:
            segments = yaml.load(f, Loader=yaml.BaseLoader)
        # Load source and target utterances
        for _lang in ["en", lang]:
            with open(op.join(txt_root, f"{split}.{_lang}")) as f:
                utterances = [r.strip() for r in f]
            assert len(segments) == len(utterances)
            for i, u in enumerate(utterances):
                segments[i][_lang] = u
        # Gather info
        self.data = []
        for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
            wav_path = op.join(wav_root, wav_filename)
            sample_rate = torchaudio.info(wav_path)[0].rate
            seg_group = sorted(_seg_group, key=lambda x: x["offset"])
            for i, segment in enumerate(seg_group):
                offset = int(float(segment["offset"]) * sample_rate)
                n_frames = int(float(segment["duration"]) * sample_rate)
                _id = f"{op.splitext(wav_filename)[0]}_{i}"
                self.data.append(
                    (
                        wav_path,
                        offset,
                        n_frames,
                        sample_rate,
                        segment["en"],
                        segment[lang],
                        segment["speaker_id"],
                        _id,
                    )
                )

    def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, str, str]:
        wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, utt_id = self.data[n]
        waveform, _ = torchaudio.load(wav_path, offset=offset, num_frames=n_frames)
        return waveform, sr, src_utt, tgt_utt, spk_id, utt_id

    def __len__(self) -> int:
        return len(self.data)


def process(args):
    for lang in MUSTC.LANGUAGES:
        cur_root = op.join(args.data_root, f"en-{lang}")
        if not op.isdir(cur_root):
            print(f"{cur_root} does not exist. Skipped.")
            continue
        # Extract features
        feature_root = op.join(cur_root, "fbank80")
        os.makedirs(feature_root, exist_ok=True)
        for split in MUSTC.SPLITS:
            print(f"Fetching split {split}...")
            dataset = MUSTC(args.data_root, lang, split)
            print("Extracting log mel filter bank features...")
            for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
                extract_fbank_features(
                    waveform, sample_rate, op.join(feature_root, f"{utt_id}.npy")
                )
        # Pack features into ZIP
        zip_filename = "fbank80.zip"
        zip_path = op.join(cur_root, zip_filename)
        print("ZIPing features...")
        create_zip(feature_root, zip_path)
        print("Fetching ZIP manifest...")
        zip_manifest = get_zip_manifest(args.data_root, f"en-{lang}/{zip_filename}")
        # Generate TSV manifest
        print("Generating manifest...")
        train_text = {task: [] for task in TASKS}
        for split in MUSTC.SPLITS:
            is_train_split = split.startswith("train")
            manifest = {c: [] for c in MANIFEST_COLUMNS}
            text = {task: [] for task in TASKS}
            dataset = MUSTC(args.data_root, lang, split)
            for wav, sr, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
                manifest["id"].append(utt_id)
                manifest["audio"].append(zip_manifest[utt_id])
                duration_ms = int(wav.size(1) / sr * 1000)
                manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10))
                text["asr"].append(src_utt)
                text["st"].append(tgt_utt)
                manifest["speaker"].append(speaker_id)
            if is_train_split:
                for task in TASKS:
                    train_text[task].extend(text[task])
            for task in TASKS:
                manifest["tgt_text"] = text[task]
                df = pd.DataFrame.from_dict(manifest)
                df = filter_manifest_df(df, is_train_split=is_train_split)
                save_df_to_tsv(df, op.join(cur_root, f"{split}_{task}.tsv"))
        # Generate vocab
        for task in TASKS:
            vocab_type, vocab_size = args.asr_vocab_type, args.asr_vocab_size
            if task == "st":
                vocab_type, vocab_size = args.st_vocab_type, args.st_vocab_size
            vocab_size_str = "" if vocab_type == "char" else str(vocab_size)
            spm_filename_prefix = f"spm_{vocab_type}{vocab_size_str}_{task}"
            with NamedTemporaryFile(mode="w") as f:
                for t in train_text[task]:
                    f.write(t + "\n")
                gen_vocab(
                    f.name,
                    op.join(cur_root, spm_filename_prefix),
                    vocab_type,
                    vocab_size,
                )
            # Generate config YAML
            gen_config_yaml(
                cur_root,
                spm_filename_prefix + ".model",
                yaml_filename=f"config_{task}.yaml",
                specaugment_policy="lb",
            )
        # Clean up
        shutil.rmtree(feature_root)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-root", "-d", required=True, type=str)
    parser.add_argument(
        "--asr-vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument(
        "--st-vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument("--asr-vocab-size", default=5000, type=int)
    parser.add_argument("--st-vocab-size", default=8000, type=int)
    args = parser.parse_args()

    process(args)


if __name__ == "__main__":
    main()