Commit 7df61696 authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add fairseq0.10.2

parents
Pipeline #471 failed with stages
in 0 seconds
# Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies within all project spaces, and it also applies when
an individual is representing the project or its community in public spaces.
Examples of representing a project or community include using an official
project e-mail address, posting via an official social media account, or acting
as an appointed representative at an online or offline event. Representation of
a project may be further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at <conduct@pytorch.org>. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq
# Contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq)
We want to make contributing to this project as easy and transparent as
possible.
## Pull Requests
We actively welcome your pull requests.
1. Fork the repo and create your branch from `master`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
5. Make sure your code lints.
6. If you haven't already, complete the Contributor License Agreement ("CLA").
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Facebook's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
## License
By contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq),
you agree that your contributions will be licensed under the LICENSE file in
the root directory of this source tree.
MIT License
Copyright (c) Facebook, Inc. and its affiliates.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
# Fairseq
Fairseq(-py)是一个序列建模工具包,允许研究人员和开发人员训练自定义模型,用于翻译、摘要、语言建模和其他文本生成任务。
## 安装步骤
按照如下步骤,下载并安装好torch相关的库文件,并安装fairseq安装依赖的环境,并进行编译安装
```
wget https://cancon.hpccube.com:65024/directlink/4/pytorch/dtk22.10/torch-1.10.0a0+git2040069.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
wget https://cancon.hpccube.com:65024/directlink/4/vision/dtk22.10/torchvision-0.10.0a0+e04d001.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
wget https://cancon.hpccube.com:65024/directlink/4/torchaudio/dtk22.10/torchaudio-0.10.0+git9dcc7a1.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip3 install torch-1.10.0a0+git2040069.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip3 install torchaudio-0.10.0+git9dcc7a1.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip3 install requirements.txt
cd fairseq
pip3 install --editable ./
```
<p align="center">
<img src="docs/fairseq_logo.png" width="150">
<br />
<br />
<a href="https://github.com/pytorch/fairseq/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
<a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
<a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
<a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
</p>
--------------------------------------------------------------------------------
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
We provide reference implementations of various sequence modeling papers:
<details><summary>List of implemented papers</summary><p>
- **Convolutional Neural Networks (CNN)**
- [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
- [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
- [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
- [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
- [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
- **LightConv and DynamicConv models**
- [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
- **Long Short-Term Memory (LSTM) networks**
- Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
- **Transformer (self-attention) networks**
- Attention Is All You Need (Vaswani et al., 2017)
- [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
- [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
- [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md)
- [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
- [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
- [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
- [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
- [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
- [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
- [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
- [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
- [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
- [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
- [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
- [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
- [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
- **Non-autoregressive Transformers**
- Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
- Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
- Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
- Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
- [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
- **Finetuning**
- [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
</p></details>
### What's New:
- October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
- October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
- October 2020: [Added CRISS models and code](examples/criss/README.md)
- September 2020: [Added Linformer code](examples/linformer/README.md)
- September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
- August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
- August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
- July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
- May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
- April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
- April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
- April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
<details><summary>Previous updates</summary><p>
- March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
- February 2020: [mBART model and code released](examples/mbart/README.md)
- February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german)
- December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
- November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
- November 2019: [CamemBERT model and code released](examples/camembert/README.md)
- November 2019: [BART model and code released](examples/bart/README.md)
- November 2019: [XLM-R models and code released](examples/xlmr/README.md)
- September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
- August 2019: [WMT'19 models released](examples/wmt19/README.md)
- July 2019: fairseq relicensed under MIT license
- July 2019: [RoBERTa models and code released](examples/roberta/README.md)
- June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
</p></details>
### Features:
- multi-GPU training on one machine or across multiple machines (data and model parallel)
- fast generation on both CPU and GPU with multiple search algorithms implemented:
- beam search
- Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
- sampling (unconstrained, top-k and top-p/nucleus)
- lexically constrained decoding ([Post & Vilar, 2018](examples/constrained_decoding/README.md))
- large mini-batch training even on a single GPU via delayed updates
- mixed precision training (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
- extensible: easily register new models, criterions, tasks, optimizers and learning rate schedulers
We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:
```python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
# Requirements and Installation
* [PyTorch](http://pytorch.org/) version >= 1.5.0
* Python version >= 3.6
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* **To install fairseq** and develop locally:
```bash
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
```
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
```
* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
* If you use Docker make sure to increase the shared memory size either with
`--ipc=host` or `--shm-size` as command line options to `nvidia-docker run`.
# Getting Started
The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.
# Pre-trained models and examples
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
as well as example training and evaluation commands.
- [Translation](examples/translation/README.md): convolutional and transformer models are available
- [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
We also have more detailed READMEs to reproduce results from specific papers:
- [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
- [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
- [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
- [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
- [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
- [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
- [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
- [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
- [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
- [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
- [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
- [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
- [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
- [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
- [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
- [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
- [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
- [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
- [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
- [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
# Join the fairseq community
* Twitter: https://twitter.com/fairseq
* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
# License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.
# Citation
Please cite as:
```bibtex
@inproceedings{ott2019fairseq,
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
year = {2019},
}
```
defaults:
- params: training_params
- task: language_modeling
- model: transformer_lm
- criterion: cross_entropy
- optimizer: adam
- lr_scheduler: inverse_sqrt
defaults:
- params: eval_lm_params
- task: language_modeling
- model: transformer_lm
- criterion: cross_entropy
- optimizer: adam
- lr_scheduler: inverse_sqrt
# @package _group_
sentence_avg: ${params.optimization.sentence_avg}
ddp_backend: ${params.distributed_training.ddp_backend}
# @package _group_
sentence_avg: ${params.optimization.sentence_avg}
ddp_backend: ${params.distributed_training.ddp_backend}
# @package _group_
warmup_updates: 0
warmup_init_lr: -1
max_lr: 1.0
t_mult: 1.0
lr_period_updates: -1
lr_shrink: 0.1
# @package _group_
warmup_updates: 4000
warmup_init_lr: -1
# @package _group_
activation_fn: "relu"
dropout: 0.1
attention_dropout: 0.0
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 512
decoder_output_dim: 512
decoder_input_dim: 512
decoder_ffn_embed_dim: 2048
decoder_layers: 6
decoder_attention_heads: 8
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "relu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 512
decoder_output_dim: 512
decoder_input_dim: 512
decoder_ffn_embed_dim: 4096
decoder_layers: 12
decoder_attention_heads: 16
decoder_normalize_before: true
no_decoder_final_norm: true
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "relu"
dropout: 0.3
attention_dropout: 0.1
activation_dropout: 0.1
relu_dropout: 0.1
decoder_embed_dim: 1024
decoder_output_dim: 1024
decoder_input_dim: 1024
decoder_ffn_embed_dim: 4096
decoder_layers: 16
decoder_attention_heads: 8
decoder_normalize_before: true
no_decoder_final_norm: true
adaptive_softmax_cutoff: "20000,60000"
adaptive_softmax_dropout: 0.2
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: true
adaptive_input_factor: 4
adaptive_input_cutoff: "20000,60000"
tie_adaptive_weights: true
tie_adaptive_proj: true
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "relu"
dropout: 0.1
attention_dropout: 0.0
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 1024
decoder_output_dim: 1024
decoder_input_dim: 1024
decoder_ffn_embed_dim: 4096
decoder_layers: 12
decoder_attention_heads: 16
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "relu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 512
decoder_output_dim: 512
decoder_input_dim: 512
decoder_ffn_embed_dim: 4096
decoder_layers: 12
decoder_attention_heads: 16
decoder_normalize_before: true
no_decoder_final_norm: true
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "gelu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 768
decoder_output_dim: 768
decoder_input_dim: 768
decoder_ffn_embed_dim: 3072
decoder_layers: 12
decoder_attention_heads: 12
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "gelu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 1600
decoder_output_dim: 1600
decoder_input_dim: 1600
decoder_ffn_embed_dim: 6400
decoder_layers: 48
decoder_attention_heads: 25
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "gelu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 1280
decoder_output_dim: 1280
decoder_input_dim: 1280
decoder_ffn_embed_dim: 5120
decoder_layers: 36
decoder_attention_heads: 20
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
# @package _group_
activation_fn: "gelu"
dropout: 0.1
attention_dropout: 0.1
activation_dropout: 0.0
relu_dropout: 0.0
decoder_embed_dim: 1024
decoder_output_dim: 1024
decoder_input_dim: 1024
decoder_ffn_embed_dim: 4096
decoder_layers: 24
decoder_attention_heads: 16
decoder_normalize_before: true
no_decoder_final_norm: false
adaptive_softmax_cutoff: null
adaptive_softmax_dropout: 0
adaptive_softmax_factor: 4
no_token_positional_embeddings: false
share_decoder_input_output_embed: false
character_embeddings: false
character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]"
character_embedding_dim: 4
char_embedder_highway_layers: 2
adaptive_input: false
adaptive_input_factor: 4
adaptive_input_cutoff: null
tie_adaptive_weights: false
tie_adaptive_proj: false
decoder_learned_pos: false
decoder_layerdrop: 0
decoder_layers_to_keep: null
layernorm_embedding: false
no_scale_embedding: false
quant_noise_pq: 0
quant_noise_pq_block_size: 8
quant_noise_scalar: 0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment