prep_librispeech_data.py 3.67 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
import os
import os.path as op
import shutil
from tempfile import NamedTemporaryFile

import pandas as pd
from examples.speech_to_text.data_utils import (
    create_zip,
    extract_fbank_features,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    save_df_to_tsv,
)
from torchaudio.datasets import LIBRISPEECH
from tqdm import tqdm


log = logging.getLogger(__name__)

SPLITS = [
    "train-clean-100",
    "train-clean-360",
    "train-other-500",
    "dev-clean",
    "dev-other",
    "test-clean",
    "test-other",
]

MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]


def process(args):
    os.makedirs(args.output_root, exist_ok=True)
    # Extract features
    feature_root = op.join(args.output_root, "fbank80")
    os.makedirs(feature_root, exist_ok=True)
    for split in SPLITS:
        print(f"Fetching split {split}...")
        dataset = LIBRISPEECH(args.output_root, url=split, download=True)
        print("Extracting log mel filter bank features...")
        for wav, sample_rate, _, spk_id, chapter_id, utt_id in tqdm(dataset):
            sample_id = f"{spk_id}-{chapter_id}-{utt_id}"
            extract_fbank_features(
                wav, sample_rate, op.join(feature_root, f"{sample_id}.npy")
            )
    # Pack features into ZIP
    zip_filename = "fbank80.zip"
    zip_path = op.join(args.output_root, zip_filename)
    print("ZIPing features...")
    create_zip(feature_root, zip_path)
    print("Fetching ZIP manifest...")
    zip_manifest = get_zip_manifest(args.output_root, zip_filename)
    # Generate TSV manifest
    print("Generating manifest...")
    train_text = []
    for split in SPLITS:
        manifest = {c: [] for c in MANIFEST_COLUMNS}
        dataset = LIBRISPEECH(args.output_root, url=split)
        for wav, sample_rate, utt, spk_id, chapter_id, utt_id in tqdm(dataset):
            sample_id = f"{spk_id}-{chapter_id}-{utt_id}"
            manifest["id"].append(sample_id)
            manifest["audio"].append(zip_manifest[sample_id])
            duration_ms = int(wav.size(1) / sample_rate * 1000)
            manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10))
            manifest["tgt_text"].append(utt)
            manifest["speaker"].append(spk_id)
        save_df_to_tsv(
            pd.DataFrame.from_dict(manifest), op.join(args.output_root, f"{split}.tsv")
        )
        if split.startswith("train"):
            train_text.extend(manifest["tgt_text"])
    # Generate vocab
    vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size)
    spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}"
    with NamedTemporaryFile(mode="w") as f:
        for t in train_text:
            f.write(t + "\n")
        gen_vocab(
            f.name,
            op.join(args.output_root, spm_filename_prefix),
            args.vocab_type,
            args.vocab_size,
        )
    # Generate config YAML
    gen_config_yaml(
        args.output_root, spm_filename_prefix + ".model", specaugment_policy="ld"
    )
    # Clean up
    shutil.rmtree(feature_root)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--output-root", "-o", required=True, type=str)
    parser.add_argument(
        "--vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument("--vocab-size", default=10000, type=int)
    args = parser.parse_args()

    process(args)


if __name__ == "__main__":
    main()