README.md 10.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Speech-to-Text (S2T) Modeling

## Data Preparation
S2T modeling data consists of source speech features, target text and other optional information
(source text, speaker id, etc.). Fairseq S2T uses per-dataset-split TSV manifest files
to store these information. Each data field is represented by a column in the TSV file.

Unlike text token embeddings, speech features (e.g. log mel-filter banks) are usually fixed
during model training and can be pre-computed. The manifest file contains the path to
either the feature file in NumPy format or the WAV/FLAC audio file. For the latter,
features will be extracted on-the-fly by fairseq S2T. Optionally, feature/audio files can be packed
into uncompressed ZIP files (then accessed via byte offset and length) to improve I/O performance.

Fairseq S2T also employs a YAML file for data related configurations: tokenizer type and dictionary path
for the target text, feature transforms such as CMVN (cepstral mean and variance normalization) and SpecAugment,
temperature-based resampling, etc.

## Model Training & Evaluation
Fairseq S2T uses the unified `fairseq-train`/`fairseq-generate` interface for model training and evaluation.
It requires arguments `--task speech_to_text` and `--arch <arch in fairseq.models.speech_to_text.*>`.


## Example 1: Speech Recognition (ASR) on LibriSpeech

#### Data preparation
Download and preprocess LibriSpeech data with
```bash
python examples/speech_to_text/prep_librispeech_data.py \
    --output-root ${LS_ROOT} --vocab-type unigram --vocab-size 10000
```
where `LS_ROOT` is the root path for downloaded data as well as generated manifest and feature files.

#### Training
```bash
fairseq-train ${LS_ROOT} --train-subset train --valid-subset dev --save-dir ${SAVE_DIR} --num-workers 4 \
    --max-tokens 40000 --task speech_to_text --criterion label_smoothed_cross_entropy --max-update 300000 \
    --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
    --clip-norm 10.0 --seed 1 --update-freq 8
```
where `SAVE_DIR` is the checkpoint root path. Here we use `--arch s2t_transformer_s` (31M parameters) as example.
You may switch to `s2t_transformer_m` (71M) or `s2t_transformer_l` (268M) for better performance. We set
`--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.

#### Inference & Evaluation
Average the last 10 checkpoints and evaluate on the 4 splits
(`dev-clean`, `dev-other`, `test-clean` and `test-other`):
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
    --inputs ${SAVE_DIR} --num-epoch-checkpoints 10 --output "${SAVE_DIR}/${CHECKPOINT_FILENAME}"
for SUBSET in dev-clean dev-other test-clean test-other; do
    fairseq-generate ${LS_ROOT} --gen-subset ${SUBSET} --task speech_to_text \
        --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 --scoring wer
done
```

#### Result

| --arch | Params | dev-clean | dev-other | test-clean | test-other |
|---|---|---|---|---|---|
| s2t_transformer_s | 30M | 4.1 | 9.3 | 4.4 | 9.2 |
| s2t_transformer_sp | 35M | 3.9 | 9.3 | 4.3 | 8.8 |
| s2t_transformer_m | 71M | 3.5 | 8.1 | 3.7 | 8.1 |
| s2t_transformer_mp | 84M | 3.3 | 7.8 | 3.7 | 8.2 |
| s2t_transformer_l | 268M | 3.3 | 7.7 | 3.5 | 7.8 |
| s2t_transformer_lp | 318M | 3.1 | 7.5 | 3.4 | 7.6 |


## Example 2: Speech Translation (ST) on MuST-C

#### Data Preparation
[Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path `MUSTC_ROOT`, then preprocess it with
```bash
python examples/speech_to_text/prep_mustc_data.py --data-root ${MUSTC_ROOT} \
    --asr-vocab-type unigram --asr-vocab-size 5000 \
    --st-vocab-type unigram --st-vocab-size 8000
```
The generated manifest and feature files will be available under `MUSTC_ROOT`.

#### ASR
###### Training
```bash
fairseq-train ${MUSTC_ROOT} --train-subset train_asr --valid-subset dev_asr --save-dir ${ASR_SAVE_DIR} \
    --num-workers 4 --max-tokens 40000 --task speech_to_text --criterion label_smoothed_cross_entropy \
    --report-accuracy --max-update 100000 --arch s2t_transformer_s --optimizer adam --lr 1e-3 \
    --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
```
where `ASR_SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
You may want to update it accordingly when using more than 1 GPU.

###### Inference & Evaluation
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
    --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${MUSTC_ROOT} --gen-subset tst-COMMON_asr --task speech_to_text \
    --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
    --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
```
###### Result
| --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru |
|---|---|---|---|---|---|---|---|---|---|
| s2t_transformer_s | 31M | 18.2 | 17.6 | 17.7 | 17.2 | 17.9 | 19.1 | 18.1 | 17.7 |

#### ST
###### Training
```bash
fairseq-train ${MUSTC_ROOT} --train-subset train_st --valid-subset dev_st --save-dir ${ST_SAVE_DIR} \
    --num-workers 4 --max-tokens 40000 --task speech_to_text --criterion label_smoothed_cross_entropy \
    --report-accuracy --max-update 100000 --arch s2t_transformer_s --optimizer adam --lr 2e-3 \
    --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
    --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
```
where `ST_SAVE_DIR` is the checkpoint root path. The ST encoder is pre-trained by ASR for faster training and better
performance: `--load-pretrained-encoder-from <ASR checkpoint path>`. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
You may want to update it accordingly when using more than 1 GPU.

###### Inference & Evaluation
Average the last 10 checkpoints and evaluate on the `tst-COMMON` split:
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
    --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${MUSTC_ROOT} --gen-subset tst-COMMON_st --task speech_to_text \
    --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 --scoring sacrebleu
```

###### Result
| --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru |
|---|---|---|---|---|---|---|---|---|---|
| s2t_transformer_s | 31M | 22.7 | 27.3 | 27.2 | 32.9 | 22.7 | 28.1 | 21.9 | 15.3 |


## Example 3: ST on CoVoST
#### Data Preparation
Download and preprocess CoVoST data with
```bash
# En ASR
python examples/speech_to_text/prep_covost_data.py --data-root ${COVOST_ROOT} \
    --vocab-type char --src-lang en
# ST
python examples/speech_to_text/prep_covost_data.py --data-root ${COVOST_ROOT} \
    --vocab-type char --src-lang fr --tgt-lang en
```
where `COVOST_ROOT` is the root path for downloaded data as well as generated manifest and feature files.

#### ASR
###### Training
```bash
fairseq-train ${COVOST_ROOT} --train-subset train_asr --valid-subset dev_asr --save-dir ${ASR_SAVE_DIR} \
    --num-workers 4 --max-tokens 40000 --task speech_to_text --criterion label_smoothed_cross_entropy \
    --report-accuracy --max-update 100000 --arch s2t_transformer_s --optimizer adam --lr 1e-3 \
    --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
```
where `ASR_SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
You may want to update it accordingly when using more than 1 GPU.

###### Inference & Evaluation
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
    --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${COVOST_ROOT} --gen-subset test_asr_en --task speech_to_text \
    --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
    --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
```
###### Result
| --arch | Params | En |
|---|---|---|
| s2t_transformer_s | 31M | 25.6 |

#### ST
###### Training
```bash
fairseq-train ${COVOST_ROOT} --train-subset train_st_fr_en --valid-subset dev_st_fr_en --save-dir ${ST_SAVE_DIR} \
    --num-workers 4 --max-tokens 40000 --task speech_to_text --criterion label_smoothed_cross_entropy \
    --report-accuracy --max-update 100000 --arch s2t_transformer_s --optimizer adam --lr 2e-3 \
    --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
    --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
```
where `ST_SAVE_DIR` is the checkpoint root path. The ST encoder is pre-trained by En ASR for faster training and better
performance: `--load-pretrained-encoder-from <ASR checkpoint path>`. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
You may want to update it accordingly when using more than 1 GPU.

###### Inference & Evaluation
Average the last 10 checkpoints and evaluate on test split:
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
    --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${COVOST_ROOT} --gen-subset test_st_fr_en --task speech_to_text \
    --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 --scoring sacrebleu
```

###### Result
| --arch | Params | Fr-En | De-En | Es-En | Ca-En | En-De | En-Ca | En-Fa | En-Et |
|---|---|---|---|---|---|---|---|---|---|
| s2t_transformer_s | 31M | 26.3 | 17.1 | 23.0 | 18.8 | 16.3 | 21.8 | 13.1 | 13.2 |

## Citation
Please cite as:
```
@inproceedings{wang2020fairseqs2t,
  title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
  author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
  booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
  year = {2020},
}

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
```