train.py 12.9 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
10
11
12
import collections
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
13

alexeib's avatar
alexeib committed
14
15
from fairseq import criterions, models, options, progress_bar
from fairseq.data import data_utils, data_loaders, OffsetDataset
16
17
18
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
19
from fairseq.utils import checkpoint_paths
Sergey Edunov's avatar
Sergey Edunov committed
20

Myle Ott's avatar
Myle Ott committed
21

Myle Ott's avatar
Myle Ott committed
22
def main(args):
23
24
25
    if args.max_tokens is None:
        args.max_tokens = 6000

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    dataset = load_dataset(args, splits)
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    # Build model and criterion
    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args, model, criterion)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
        trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    train_dataloader = dataset.train_dataloader_generator(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(
            min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
            min(args.max_target_positions, trainer.get_model().max_decoder_positions())
        ),
        seed=args.seed,
        sample_without_replacement=args.sample_without_replacement,
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )

    # Load the latest checkpoint if one is available
alexeib's avatar
alexeib committed
76
    epoch, next_ds = load_checkpoint(args, trainer, train_dataloader)
77
78

    # Send a dummy batch to warm the caching allocator
alexeib's avatar
alexeib committed
79
    dummy_batch = data_utils.get_dummy_batch(args.max_tokens, dataset.src_dict, dataset.dst_dict)
80
81
82
83
84
85
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
86
    first_val_loss = None
87
88
89
90
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
alexeib's avatar
alexeib committed
91
        train(args, trainer, next_ds, epoch, dataset)
92
93

        if epoch % args.validate_interval == 0:
94
            first_val_loss = val_loss(args, trainer, dataset, epoch)
95
96
97
98
99
100

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch, first_val_loss)

        # save checkpoint
        if not args.no_save and epoch % args.save_interval == 0:
101
            save_checkpoint(trainer, args, epoch, end_of_epoch=True, val_loss=first_val_loss)
102
103

        epoch += 1
alexeib's avatar
alexeib committed
104
        next_ds = next(train_dataloader)
105
106
107
108
109
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


def load_dataset(args, splits):
alexeib's avatar
alexeib committed
110
111
    is_raw = not data_utils.has_binary_files(args.data, splits)
    dataset = data_loaders.load_dataset(args, splits, is_raw)
112
113
114
    return dataset


115
def train(args, trainer, itr, epoch, dataset):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    # update parameters every N batches
    if epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch - 1]
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    max_update = args.max_update or math.inf
    num_batches = len(itr)
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    for i, sample in enumerate(progress):
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

163
164
165
166
167
168
        num_updates = trainer.get_num_updates()
        if not args.no_save and (args.save_interval_updates or 0) > 0 and num_updates % args.save_interval_updates == 0:
            first_val_loss = val_loss(args, trainer, dataset, epoch, num_updates)
            save_checkpoint(trainer, args, epoch, end_of_epoch=False, val_loss=first_val_loss)

        if num_updates >= max_update:
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
    return stats


202
def validate(args, trainer, dataset, subset, epoch, num_updates):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    """Evaluate the model on the validation set and return the average loss."""

    # Initialize dataloader
    max_positions_valid = (
        trainer.get_model().max_encoder_positions(),
        trainer.get_model().max_decoder_positions(),
    )
    itr = dataset.eval_dataloader(
        subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions_valid,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(
        args, itr, epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple'
    )

    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for sample in progress:
        log_output = trainer.valid_step(sample)

    # log validation stats
    stats = get_valid_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
240
241
242
243

    if num_updates is not None:
        stats['num_updates'] = num_updates

244
245
246
247
248
249
250
251
252
253
254
    progress.print(stats)

    return stats['valid_loss']


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
255
    else:
256
257
258
259
260
261
262
263
264
265
266
267
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


268
269
270
271
def val_loss(args, trainer, dataset, epoch, num_updates=None):
    # evaluate on validate set
    subsets = args.valid_subset.split(',')
    # we want to validate all subsets so the results get printed out, but return only the first
272
    losses = [validate(args, trainer, dataset, subset, epoch, num_updates) for subset in subsets]
273
274
275
276
    return losses[0] if len(losses) > 0 else None


def save_checkpoint(trainer, args, epoch, end_of_epoch, val_loss):
277
278
279
    extra_state = {
        'epoch': epoch,
        'val_loss': val_loss,
280
        'wall_time': trainer.get_meter('wall').elapsed_time,
281
282
    }

283
    if end_of_epoch and not args.no_epoch_checkpoints:
284
285
        epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
        trainer.save_checkpoint(epoch_filename, extra_state)
286
287
288
289
290
291
292
293
294
    elif not end_of_epoch and args.keep_interval_updates > 0:
        checkpoint_filename = os.path.join(args.save_dir,
                                           'checkpoint_{}_{}.pt'.format(epoch, trainer.get_num_updates()))
        trainer.save_checkpoint(checkpoint_filename, extra_state)
        # remove old checkpoints
        checkpoints = checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
        # checkpoints are sorted in descending order
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    assert val_loss is not None
    if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
        save_checkpoint.best = val_loss
        best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
        trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


def load_checkpoint(args, trainer, train_dataloader):
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    epoch = 1
alexeib's avatar
alexeib committed
310
    ds = None
311
312
313
314
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            epoch = extra_state['epoch']
alexeib's avatar
alexeib committed
315
316
317
318
            trainer_updates = trainer.get_num_updates()

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(checkpoint_path, epoch, trainer_updates))

319
            trainer.lr_step(epoch)
alexeib's avatar
alexeib committed
320
            updates = 0
321
            for i in range(epoch):
alexeib's avatar
alexeib committed
322
323
324
325
326
327
328
329
330
                ds = next(train_dataloader)
                updates += len(ds)

            if ds is not None and updates > trainer_updates:
                ds = OffsetDataset(ds, updates - trainer_updates)
            else:
                ds = next(train_dataloader)
                epoch += 1

331
            trainer.get_meter('wall').reset(init=extra_state.get('wall_time', 0))
alexeib's avatar
alexeib committed
332
    return epoch, ds or next(train_dataloader)
Sergey Edunov's avatar
Sergey Edunov committed
333

Myle Ott's avatar
Myle Ott committed
334

Sergey Edunov's avatar
Sergey Edunov committed
335
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
336
337
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
338
339
340

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
341

342
343
344
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
345

346
347
348
        multiprocessing_main(args)
    else:
        main(args)