test_sequence_generator.py 14.5 KB
Newer Older
1
# Copyright (c) Facebook, Inc. and its affiliates.
Myle Ott's avatar
Myle Ott committed
2
#
3
4
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
5
6
7
8
9
10
11
12
13
14
15

import argparse
import unittest

import torch

from fairseq.sequence_generator import SequenceGenerator

import tests.utils as test_utils


Xing Zhou's avatar
Xing Zhou committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class TestSequenceGeneratorBase(unittest.TestCase):

    def assertHypoTokens(self, hypo, tokens):
        self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertAlmostEqual(hypo['positional_scores'], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo['tokens'].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel()**lenpen
        self.assertLess(abs(score - hypo['score']), 1e-6)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


class TestSequenceGenerator(TestSequenceGeneratorBase):
Myle Ott's avatar
Myle Ott committed
40
41

    def setUp(self):
Myle Ott's avatar
Myle Ott committed
42
43
44
        self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model = (
            test_utils.sequence_generator_setup()
        )
Myle Ott's avatar
Myle Ott committed
45
46
47
48
        self.sample = {
            'net_input': {
                'src_tokens': src_tokens, 'src_lengths': src_lengths,
            },
49
        }
Myle Ott's avatar
Myle Ott committed
50
51

    def test_with_normalization(self):
Myle Ott's avatar
Myle Ott committed
52
53
        generator = SequenceGenerator(self.tgt_dict, beam_size=2)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
54
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])

    def test_without_normalization(self):
        # Sentence 1: unchanged from the normalized case
        # Sentence 2: beams swap order
Myle Ott's avatar
Myle Ott committed
71
72
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, normalize_scores=False)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
73
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)

    def test_with_lenpen_favoring_short_hypos(self):
        lenpen = 0.6
Myle Ott's avatar
Myle Ott committed
89
90
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
91
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)

    def test_with_lenpen_favoring_long_hypos(self):
        lenpen = 5.0
Myle Ott's avatar
Myle Ott committed
107
108
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
109
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)

    def test_maxlen(self):
Myle Ott's avatar
Myle Ott committed
124
125
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, max_len_b=2)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
126
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])


Xing Zhou's avatar
Xing Zhou committed
141
class TestDiverseBeamSearch(TestSequenceGeneratorBase):
Myle Ott's avatar
Myle Ott committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.9, 0.1],  # beam 1
                [0.0, unk, 0.9, 0.1],  # beam 2
                # sentence 2:
                [0.0, unk, 0.7, 0.3],
                [0.0, unk, 0.7, 0.3],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.6, 0.4],
                [0.0, unk, 0.6, 0.4],
                # sentence 2:
                [0.25, unk, 0.35, 0.4],
                [0.25, unk, 0.35, 0.4],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                # sentence 2:
                [0.9, unk, 0.1, 0.0],
                [0.9, unk, 0.1, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_diverse_beam_search(self):
        generator = SequenceGenerator(
Myle Ott's avatar
Myle Ott committed
201
            self.tgt_dict, beam_size=2, diverse_beam_groups=2, diverse_beam_strength=0.,
Myle Ott's avatar
Myle Ott committed
202
        )
Myle Ott's avatar
Myle Ott committed
203
204
        sample = {'net_input': {'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths}}
        hypos = generator.generate([self.model], sample)
Myle Ott's avatar
Myle Ott committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9])


Xing Zhou's avatar
Xing Zhou committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
class TestTopPSamplingSearch(TestSequenceGeneratorBase):

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        # The minimal probability of top 2 tokens.
        self.min_top2_prob = 0.75
        # The minimal probability of the top 1 token.
        self.min_top1_prob = 0.4

        w1_prob = self.min_top1_prob
        w2_prob = self.min_top2_prob - self.min_top1_prob
        eos_prob = 1 - self.min_top2_prob

        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos           w1       w2
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_topp_sampling_search_low_prob(self):
        # Given a prob low enough to top-P sampling, we expect only the top
        # 1 token to be sampled, which always results in the same output.
        low_sampling_topp = self.min_top1_prob/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=low_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1 = self.eos, self.w1
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w1, eos])
        self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
        self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0])

    def test_topp_sampling_search_high_prob(self):
        # Given a prob high enough to top-P sampling, any of the top 2
        # tokens could be sampled. This can cause different outputs.
        high_sampling_topp = (self.min_top1_prob+self.min_top2_prob)/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=high_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertTrue(self.hypoTokens(hypos[0][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]))

        # sentence 1, beam 2
        self.assertTrue(self.hypoTokens(hypos[0][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]))

        # sentence 2, beam 1
        self.assertTrue(self.hypoTokens(hypos[1][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]))

        # sentence 2, beam 2
        self.assertTrue(self.hypoTokens(hypos[1][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]))

    def hypoTokens(self, hypo, tokens):
        return self.tensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
Myle Ott's avatar
Myle Ott committed
354
        pos_scores = torch.FloatTensor(pos_probs).log()
Xing Zhou's avatar
Xing Zhou committed
355
356
357
358
        if not self.almostEqual(hypo['positional_scores'], pos_scores):
            return False
        if pos_scores.numel() != hypo['tokens'].numel():
            return False
Myle Ott's avatar
Myle Ott committed
359
360
        score = pos_scores.sum()
        if normalized:
Xing Zhou's avatar
Xing Zhou committed
361
362
            score /= pos_scores.numel() ** lenpen
        return abs(score - hypo['score']) < 1e-6
Myle Ott's avatar
Myle Ott committed
363

Xing Zhou's avatar
Xing Zhou committed
364
365
    def almostEqual(self, t1, t2):
        return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4
Myle Ott's avatar
Myle Ott committed
366

Xing Zhou's avatar
Xing Zhou committed
367
368
    def tensorEqual(self, t1, t2):
        return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0
Myle Ott's avatar
Myle Ott committed
369
370


Myle Ott's avatar
Myle Ott committed
371
372
if __name__ == '__main__':
    unittest.main()