test_sequence_generator.py 15.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import argparse
import unittest

import torch

from fairseq.sequence_generator import SequenceGenerator

import tests.utils as test_utils


Xing Zhou's avatar
Xing Zhou committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class TestSequenceGeneratorBase(unittest.TestCase):

    def assertHypoTokens(self, hypo, tokens):
        self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertAlmostEqual(hypo['positional_scores'], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo['tokens'].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel()**lenpen
        self.assertLess(abs(score - hypo['score']), 1e-6)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


class TestSequenceGenerator(TestSequenceGeneratorBase):
Myle Ott's avatar
Myle Ott committed
42
43

    def setUp(self):
Myle Ott's avatar
Myle Ott committed
44
45
46
        self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model = (
            test_utils.sequence_generator_setup()
        )
Myle Ott's avatar
Myle Ott committed
47
48
49
50
        self.sample = {
            'net_input': {
                'src_tokens': src_tokens, 'src_lengths': src_lengths,
            },
51
        }
Myle Ott's avatar
Myle Ott committed
52
53

    def test_with_normalization(self):
Myle Ott's avatar
Myle Ott committed
54
55
        generator = SequenceGenerator(self.tgt_dict, beam_size=2)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
56
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])

    def test_without_normalization(self):
        # Sentence 1: unchanged from the normalized case
        # Sentence 2: beams swap order
Myle Ott's avatar
Myle Ott committed
73
74
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, normalize_scores=False)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
75
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)

    def test_with_lenpen_favoring_short_hypos(self):
        lenpen = 0.6
Myle Ott's avatar
Myle Ott committed
91
92
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
93
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)

    def test_with_lenpen_favoring_long_hypos(self):
        lenpen = 5.0
Myle Ott's avatar
Myle Ott committed
109
110
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
111
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)

    def test_maxlen(self):
Myle Ott's avatar
Myle Ott committed
126
127
        generator = SequenceGenerator(self.tgt_dict, beam_size=2, max_len_b=2)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
128
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])

    def test_no_stop_early(self):
Myle Ott's avatar
Myle Ott committed
143
144
        generator = SequenceGenerator(self.tgt_dict, stop_early=False, beam_size=2)
        hypos = generator.generate([self.model], self.sample)
Myle Ott's avatar
Myle Ott committed
145
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
Myle Ott's avatar
Myle Ott committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w2, w2, w2, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.3, 0.9, 0.99, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0])


Xing Zhou's avatar
Xing Zhou committed
160
class TestDiverseBeamSearch(TestSequenceGeneratorBase):
Myle Ott's avatar
Myle Ott committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.9, 0.1],  # beam 1
                [0.0, unk, 0.9, 0.1],  # beam 2
                # sentence 2:
                [0.0, unk, 0.7, 0.3],
                [0.0, unk, 0.7, 0.3],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.6, 0.4],
                [0.0, unk, 0.6, 0.4],
                # sentence 2:
                [0.25, unk, 0.35, 0.4],
                [0.25, unk, 0.35, 0.4],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                # sentence 2:
                [0.9, unk, 0.1, 0.0],
                [0.9, unk, 0.1, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_diverse_beam_search(self):
        generator = SequenceGenerator(
Myle Ott's avatar
Myle Ott committed
220
            self.tgt_dict, beam_size=2, diverse_beam_groups=2, diverse_beam_strength=0.,
Myle Ott's avatar
Myle Ott committed
221
        )
Myle Ott's avatar
Myle Ott committed
222
223
        sample = {'net_input': {'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths}}
        hypos = generator.generate([self.model], sample)
Myle Ott's avatar
Myle Ott committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9])


Xing Zhou's avatar
Xing Zhou committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
class TestTopPSamplingSearch(TestSequenceGeneratorBase):

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ])
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.
        # The minimal probability of top 2 tokens.
        self.min_top2_prob = 0.75
        # The minimal probability of the top 1 token.
        self.min_top1_prob = 0.4

        w1_prob = self.min_top1_prob
        w2_prob = self.min_top2_prob - self.min_top1_prob
        eos_prob = 1 - self.min_top2_prob

        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
                [0.0, unk, 1.0, 0.0],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos           w1       w2
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
                [eos_prob, unk, w1_prob, w2_prob],
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
                [1.0, unk, 0.0, 0.0],
            ]),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_topp_sampling_search_low_prob(self):
        # Given a prob low enough to top-P sampling, we expect only the top
        # 1 token to be sampled, which always results in the same output.
        low_sampling_topp = self.min_top1_prob/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=low_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1 = self.eos, self.w1
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w1, eos])
        self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
        self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0])

    def test_topp_sampling_search_high_prob(self):
        # Given a prob high enough to top-P sampling, any of the top 2
        # tokens could be sampled. This can cause different outputs.
        high_sampling_topp = (self.min_top1_prob+self.min_top2_prob)/2.0
        generator = SequenceGenerator(
            self.tgt_dict, beam_size=2, sampling=True,
            sampling_topp=high_sampling_topp
        )
        sample = {
            'net_input': {
                'src_tokens': self.src_tokens,
                'src_lengths': self.src_lengths
            }
        }
        hypos = generator.generate([self.model], sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertTrue(self.hypoTokens(hypos[0][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]))

        # sentence 1, beam 2
        self.assertTrue(self.hypoTokens(hypos[0][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[0][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]))

        # sentence 2, beam 1
        self.assertTrue(self.hypoTokens(hypos[1][0], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][0], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]))

        # sentence 2, beam 2
        self.assertTrue(self.hypoTokens(hypos[1][1], [w1, w1, eos]) or
                        self.hypoTokens(hypos[1][1], [w1, w2, eos]))
        self.assertTrue(self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or
                        self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]))

    def hypoTokens(self, hypo, tokens):
        return self.tensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
Myle Ott's avatar
Myle Ott committed
373
        pos_scores = torch.FloatTensor(pos_probs).log()
Xing Zhou's avatar
Xing Zhou committed
374
375
376
377
        if not self.almostEqual(hypo['positional_scores'], pos_scores):
            return False
        if pos_scores.numel() != hypo['tokens'].numel():
            return False
Myle Ott's avatar
Myle Ott committed
378
379
        score = pos_scores.sum()
        if normalized:
Xing Zhou's avatar
Xing Zhou committed
380
381
            score /= pos_scores.numel() ** lenpen
        return abs(score - hypo['score']) < 1e-6
Myle Ott's avatar
Myle Ott committed
382

Xing Zhou's avatar
Xing Zhou committed
383
384
    def almostEqual(self, t1, t2):
        return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4
Myle Ott's avatar
Myle Ott committed
385

Xing Zhou's avatar
Xing Zhou committed
386
387
    def tensorEqual(self, t1, t2):
        return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0
Myle Ott's avatar
Myle Ott committed
388
389


Myle Ott's avatar
Myle Ott committed
390
391
if __name__ == '__main__':
    unittest.main()