preprocess.py 7.3 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import argparse
from itertools import zip_longest
12
13
import os
import shutil
Sergey Edunov's avatar
Sergey Edunov committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from fairseq import dictionary, indexed_dataset
from fairseq.tokenizer import Tokenizer


def main():
    parser = argparse.ArgumentParser(
        description='Data pre-processing: Create dictionary and store data in binary format')
    parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language')
    parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language')
    parser.add_argument('--trainpref', metavar='FP', default='train', help='target language')
    parser.add_argument('--validpref', metavar='FP', default='valid', help='comma separated, valid language prefixes')
    parser.add_argument('--testpref', metavar='FP', default='test', help='comma separated, test language prefixes')
    parser.add_argument('--destdir', metavar='DIR', default='data-bin', help='destination dir')
    parser.add_argument('--thresholdtgt', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
    parser.add_argument('--thresholdsrc', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
32
33
    parser.add_argument('--tgtdict', metavar='FP', help='reuse given target dictionary')
    parser.add_argument('--srcdict', metavar='FP', help='reuse given source dictionary')
Sergey Edunov's avatar
Sergey Edunov committed
34
35
36
    parser.add_argument('--nwordstgt', metavar='N', default=-1, type=int, help='number of target words to retain')
    parser.add_argument('--nwordssrc', metavar='N', default=-1, type=int, help='number of source words to retain')
    parser.add_argument('--alignfile', metavar='ALIGN', default=None, help='an alignment file (optional)')
37
38
    parser.add_argument('--output-format', metavar='FORMAT', default='binary', choices=['binary', 'raw'],
                        help='output format (optional)')
Sergey Edunov's avatar
Sergey Edunov committed
39
40
41
42
43

    args = parser.parse_args()
    print(args)
    os.makedirs(args.destdir, exist_ok=True)

44
45
46
47
    if args.srcdict:
        src_dict = dictionary.Dictionary.load(args.srcdict)
    else:
        src_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.source_lang))
Sergey Edunov's avatar
Sergey Edunov committed
48
49
    src_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)),
                  threshold=args.thresholdsrc, nwords=args.nwordssrc)
50
51
52
53
54

    if args.tgtdict:
        tgt_dict = dictionary.Dictionary.load(args.tgtdict)
    else:
        tgt_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.target_lang))
Sergey Edunov's avatar
Sergey Edunov committed
55
56
57
    tgt_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)),
                  threshold=args.thresholdtgt, nwords=args.nwordstgt)

58
    def make_binary_dataset(input_prefix, output_prefix, lang):
Sergey Edunov's avatar
Sergey Edunov committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(lang)))
        print('| [{}] Dictionary: {} types'.format(lang, len(dict) - 1))

        ds = indexed_dataset.IndexedDatasetBuilder(
            '{}/{}.{}-{}.{}.bin'.format(args.destdir, output_prefix, args.source_lang,
                                        args.target_lang, lang)
        )

        def consumer(tensor):
            ds.add_item(tensor)

        input_file = '{}.{}'.format(input_prefix, lang)
        res = Tokenizer.binarize(input_file, dict, consumer)
        print('| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}'.format(
            lang, input_file, res['nseq'], res['ntok'],
            100 * res['nunk'] / res['ntok'], dict.unk_word))
        ds.finalize('{}/{}.{}-{}.{}.idx'.format(
            args.destdir, output_prefix,
            args.source_lang, args.target_lang, lang))

79
80
81
82
83
84
85
86
87
88
    def make_dataset(input_prefix, output_prefix, lang, output_format='binary'):
        if output_format == 'binary':
            make_binary_dataset(input_prefix, output_prefix, lang)
        elif output_format == 'raw':
            # Copy original text file to destination folder
            output_text_file = os.path.join(args.destdir, f'{output_prefix}.{lang}')
            shutil.copyfile('{}.{}'.format(input_prefix, lang), output_text_file)

    make_dataset(args.trainpref, 'train', args.source_lang, args.output_format)
    make_dataset(args.trainpref, 'train', args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
89
90
    for k, validpref in enumerate(args.validpref.split(',')):
        outprefix = 'valid{}'.format(k) if k > 0 else 'valid'
91
92
        make_dataset(validpref, outprefix, args.source_lang, args.output_format)
        make_dataset(validpref, outprefix, args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
93
94
    for k, testpref in enumerate(args.testpref.split(',')):
        outprefix = 'test{}'.format(k) if k > 0 else 'test'
95
96
        make_dataset(testpref, outprefix, args.source_lang, args.output_format)
        make_dataset(testpref, outprefix, args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    print('| Wrote preprocessed data to {}'.format(args.destdir))

    if args.alignfile:
        src_file_name = '{}.{}'.format(args.trainpref, args.source_lang)
        tgt_file_name = '{}.{}'.format(args.trainpref, args.target_lang)
        src_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)))
        freq_map = {}
        with open(args.alignfile, 'r') as align_file:
            with open(src_file_name, 'r') as src_file:
                with open(tgt_file_name, 'r') as tgt_file:
                    for a, s, t in zip_longest(align_file, src_file, tgt_file):
                        si = Tokenizer.tokenize(s, src_dict, add_if_not_exist=False)
                        ti = Tokenizer.tokenize(t, tgt_dict, add_if_not_exist=False)
                        ai = list(map(lambda x: tuple(x.split('-')), a.split()))
                        for sai, tai in ai:
                            srcidx = si[int(sai)]
                            tgtidx = ti[int(tai)]
                            if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk():
                                assert srcidx != src_dict.pad()
                                assert srcidx != src_dict.eos()
                                assert tgtidx != tgt_dict.pad()
                                assert tgtidx != tgt_dict.eos()

                                if srcidx not in freq_map:
                                    freq_map[srcidx] = {}
                                if tgtidx not in freq_map[srcidx]:
                                    freq_map[srcidx][tgtidx] = 1
                                else:
                                    freq_map[srcidx][tgtidx] += 1

        align_dict = {}
        for srcidx in freq_map.keys():
            align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get)

        with open(os.path.join(args.destdir, 'alignment.{}-{}.txt'.format(
                args.source_lang, args.target_lang)), 'w') as f:
            for k, v in align_dict.items():
                print('{} {}'.format(src_dict[k], tgt_dict[v]), file=f)


if __name__ == '__main__':
    main()