preprocess.py 6.56 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import argparse
import os
from itertools import zip_longest

from fairseq import dictionary, indexed_dataset
from fairseq.tokenizer import Tokenizer


def main():
    parser = argparse.ArgumentParser(
        description='Data pre-processing: Create dictionary and store data in binary format')
    parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language')
    parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language')
    parser.add_argument('--trainpref', metavar='FP', default='train', help='target language')
    parser.add_argument('--validpref', metavar='FP', default='valid', help='comma separated, valid language prefixes')
    parser.add_argument('--testpref', metavar='FP', default='test', help='comma separated, test language prefixes')
    parser.add_argument('--destdir', metavar='DIR', default='data-bin', help='destination dir')
    parser.add_argument('--thresholdtgt', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
    parser.add_argument('--thresholdsrc', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
31
32
    parser.add_argument('--tgtdict', metavar='FP', help='reuse given target dictionary')
    parser.add_argument('--srcdict', metavar='FP', help='reuse given source dictionary')
Sergey Edunov's avatar
Sergey Edunov committed
33
34
35
36
37
38
39
40
41
    parser.add_argument('--nwordstgt', metavar='N', default=-1, type=int, help='number of target words to retain')
    parser.add_argument('--nwordssrc', metavar='N', default=-1, type=int, help='number of source words to retain')
    parser.add_argument('--alignfile', metavar='ALIGN', default=None, help='an alignment file (optional)')

    args = parser.parse_args()
    print(args)

    os.makedirs(args.destdir, exist_ok=True)

42
43
44
45
    if args.srcdict:
        src_dict = dictionary.Dictionary.load(args.srcdict)
    else:
        src_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.source_lang))
Sergey Edunov's avatar
Sergey Edunov committed
46
47
    src_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)),
                  threshold=args.thresholdsrc, nwords=args.nwordssrc)
48
49
50
51
52

    if args.tgtdict:
        tgt_dict = dictionary.Dictionary.load(args.tgtdict)
    else:
        tgt_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.target_lang))
Sergey Edunov's avatar
Sergey Edunov committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    tgt_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)),
                  threshold=args.thresholdtgt, nwords=args.nwordstgt)

    def make_dataset(input_prefix, output_prefix, lang):
        dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(lang)))
        print('| [{}] Dictionary: {} types'.format(lang, len(dict) - 1))

        ds = indexed_dataset.IndexedDatasetBuilder(
            '{}/{}.{}-{}.{}.bin'.format(args.destdir, output_prefix, args.source_lang,
                                        args.target_lang, lang)
        )

        def consumer(tensor):
            ds.add_item(tensor)

        input_file = '{}.{}'.format(input_prefix, lang)
        res = Tokenizer.binarize(input_file, dict, consumer)
        print('| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}'.format(
            lang, input_file, res['nseq'], res['ntok'],
            100 * res['nunk'] / res['ntok'], dict.unk_word))
        ds.finalize('{}/{}.{}-{}.{}.idx'.format(
            args.destdir, output_prefix,
            args.source_lang, args.target_lang, lang))

    make_dataset(args.trainpref, 'train', args.source_lang)
    make_dataset(args.trainpref, 'train', args.target_lang)
    for k, validpref in enumerate(args.validpref.split(',')):
        outprefix = 'valid{}'.format(k) if k > 0 else 'valid'
        make_dataset(validpref, outprefix, args.source_lang)
        make_dataset(validpref, outprefix, args.target_lang)
    for k, testpref in enumerate(args.testpref.split(',')):
        outprefix = 'test{}'.format(k) if k > 0 else 'test'
        make_dataset(testpref, outprefix, args.source_lang)
        make_dataset(testpref, outprefix, args.target_lang)
    print('| Wrote preprocessed data to {}'.format(args.destdir))

    if args.alignfile:
        src_file_name = '{}.{}'.format(args.trainpref, args.source_lang)
        tgt_file_name = '{}.{}'.format(args.trainpref, args.target_lang)
        src_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)))
        freq_map = {}
        with open(args.alignfile, 'r') as align_file:
            with open(src_file_name, 'r') as src_file:
                with open(tgt_file_name, 'r') as tgt_file:
                    for a, s, t in zip_longest(align_file, src_file, tgt_file):
                        si = Tokenizer.tokenize(s, src_dict, add_if_not_exist=False)
                        ti = Tokenizer.tokenize(t, tgt_dict, add_if_not_exist=False)
                        ai = list(map(lambda x: tuple(x.split('-')), a.split()))
                        for sai, tai in ai:
                            srcidx = si[int(sai)]
                            tgtidx = ti[int(tai)]
                            if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk():
                                assert srcidx != src_dict.pad()
                                assert srcidx != src_dict.eos()
                                assert tgtidx != tgt_dict.pad()
                                assert tgtidx != tgt_dict.eos()

                                if srcidx not in freq_map:
                                    freq_map[srcidx] = {}
                                if tgtidx not in freq_map[srcidx]:
                                    freq_map[srcidx][tgtidx] = 1
                                else:
                                    freq_map[srcidx][tgtidx] += 1

        align_dict = {}
        for srcidx in freq_map.keys():
            align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get)

        with open(os.path.join(args.destdir, 'alignment.{}-{}.txt'.format(
                args.source_lang, args.target_lang)), 'w') as f:
            for k, v in align_dict.items():
                print('{} {}'.format(src_dict[k], tgt_dict[v]), file=f)


if __name__ == '__main__':
    main()